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Abstract Convergence and conditioning results are presented for the lowest-order
member of a family of Nyström methods for arbitrary, exterior, three-dimensional
Stokes flow. The flow problem is formulated in terms of a recently introduced
two-parameter, weakly singular boundary integral equation of the second kind. In
contrast to methods based on product integration, coordinate transformation and
singularity subtraction, the family of Nyström methods considered here is based
on a local polynomial correction determined by an auxiliary system of moment
equations. The polynomial correction is designed to remove the weak singularity
in the integral equation and provide control over the approximation error. Here we
focus attention on the lowest-order method of the family, whose implementation is
especially simple. We outline a convergence theorem for this method and illustrate
it with various numerical examples. Our examples show that well-conditioned,
accurate approximations can be obtained with reasonable meshes for a range of
different geometries.

Keywords Stokes equations, boundary integral equations, single-layer potentials,
double-layer potentials, Nyström approximation
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1 Introduction

We consider the problem of determining the slow, steady flow of an incompressible
viscous fluid past a moving body of arbitrary shape. Mathematically, the problem
is described by the classic Stokes system in an exterior, three-dimensional domain
with prescribed velocity data. This problem plays a central role in the study of
hydrodynamic convection and diffusion processes for small particles in dilute so-
lution, specifically in the determination of convection and diffusion coefficients,
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which have numerous practical and theoretical applications. On the practical side,
such coefficients play a central role in the design of mass transfer equipment used
in various biochemical industries. On the theoretical side, such coefficients play
a central role in various experimental methods in physical chemistry [17,60,63],
which are used to measure and study the structural properties of molecules like
proteins and DNA [1–5,14,25,27]. A detailed understanding of the convective and
diffusive properties of particles in solution is fundamental in many different appli-
cations, ranging from sequencing technologies for DNA [42,45,46], to the design of
a variety of microfluidic devices in physics, chemistry and biology [12,13,19–21,34,
55,57–59,62]. Indeed, the interplay between diffusion and convection is crucially
important in the design and performance of devices for the transport, mixing,
separation and manipulation of particles.

Several approaches are available for the analysis and numerical treatment of the
exterior Stokes problem. Due to the unbounded character of the domain, boundary
integral approaches are generally preferable over domain approaches. For instance,
the numerical treatment of the latter requires special considerations such as do-
main truncation and artificial boundary conditions. Within the class of boundary
integral approaches, it is well-known that a formulation based on either of the clas-
sic single- or double-layer Stokes potentials is inadequate or incomplete [53,54];
each formulation alone is not capable of representing an arbitrary exterior flow.
However, various authors have shown that a double-layer formulation can be mod-
ified in different ways to obtain completeness [31,35,40,50,52]. Here we employ a
completed double-layer formulation of Stokes flow recently studied in [26]. This
formulation combines the strengths of various previous approaches and is natural
for bodies of complicated shape and topology. The formulation is a weakly singular
boundary integral equation of the second kind, involves two free parameters, and
has been shown to be uniquely solvable for arbitrary exterior flows under minimal
regularity assumptions consistent with classic potential theory [30,47]; specifically,
that the boundary is a Lyapunov surface of class C1,1 and that the velocity data
is of class C0.

In this article, we study a Nyström method for approximating the complete,
weakly singular boundary integral formulation of exterior Stokes flow introduced
in [26]. We introduce a general family of methods, and then outline a conver-
gence result for the lowest-order method in the family under minimal regularity
assumptions as above. In contrast to methods based on product integration [10,
36], coordinate transformation [15,64] and singularity subtraction [8,37,56], the
family of Nyström methods described here is based on a local polynomial cor-
rection determined by an auxiliary system of moment equations. The polynomial
correction is designed to remove the weak singularity in the integral equation and
provide control over the approximation error. Moreover, for the method considered
here, there are no weakly singular integrals that need to be evaluated. We outline
a theorem which shows that the lowest-order method is convergent on C1,1 Lya-
punov surfaces with C0 data, and that the convergence rate is at least linear under
higher regularity assumptions. Surfaces with this minimal regularity arise natu-
rally in various applications, for example in molecular modeling. As a corollary of
our result, a simple singularity subtraction method which has been employed by
many authors is implied to be convergent under the same assumptions.

We present numerical experiments on several different geometries that illus-
trate both the convergence and the conditioning of the method as a function of



Convergence and conditioning of a Nyström method for Stokes flow 3

the free parameters in the boundary integral formulation. Our experiments show
that high accuracy can be achieved on reasonable meshes for a range of different
geometries, including some with rather high curvatures. Moreover, our experiments
show that the associated linear systems are well-conditioned for a large range of
parameter values independent of the level of mesh refinement. Consequently, these
systems can be solved efficiently using iterative methods without pre-conditioners.
We remark that several types of Galerkin and collocation methods [10,11,18,36]
could also be considered, as well as spectral Galerkin [9,23,29] and wavelet-based
methods [6,41,61]. However, these approaches generally require basis functions
that may be difficult to construct, or which may exist only for certain classes of ge-
ometries. Moreover, they require special techniques for computing weakly singular
integrals, which can be expensive. Our results show that the lowest-order mem-
ber of a family of locally-corrected Nyström methods provides a simple, efficient
and provably convergent alternative to these and various other higher-order meth-
ods. Indeed, for boundary surfaces and data of limited regularity, the lowest-order
method introduced here may achieve a comparable rate of convergence without
the extra cost.

The mathematical theory of convergence of Nyström methods for boundary
integral equations of the second kind on regular surfaces is a well-studied subject.
The convergence theory for standard methods on problems with continuous ker-
nels is classic [10,24,36]. Similarly, the theory for product integration methods on
problems with weakly singular kernels is also well-established [10,24,36], although
some of the hypotheses may be difficult to verify in three-dimensional problems.
Convergence results for methods based on floating polar coordinate transforma-
tions are described in [15,38,64]. Convergence results for methods based on the
classic idea of singularity subtraction as introduced by Kantorovich and Krylov [37]
have been established for one-dimensional problems in [8], and have been studied
for higher-dimensional problems in [56]. Locally-corrected methods based on aux-
iliary moment equations were considered in [16], but no mathematical convergence
results were given. Here we introduce a family of locally-corrected methods for the
vector-valued Stokes problem in three-dimensions and outline a convergence result
for the lowest-order method. Detailed proofs for the entire family of methods for
a general class of boundary integral equations are given in a separate work [28].

The presentation is structured as follows. In Section 2 we outline the Stokes
equations for the steady flow of an incompressible viscous fluid in an exterior
domain. In Section 3 we establish notation and outline the properties of the classic
surface potentials for the Stokes equations that will be needed throughout our
developments. In Section 4 we summarize the two-parameter boundary integral
formulation of Stokes flow to be approximated. In Section 5 we introduce the
Nyström approximation and outline our convergence result, and in Section 6 we
present our numerical experiments.

2 The exterior Stokes problem

Here we define the boundary value problem to be studied. We briefly outline
standard assumptions which guarantee existence and uniqueness of solutions, and
introduce various flow quantities of interest that will arise in our analysis. For
further details on the exterior Stokes problem see [40].
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2.1 Formulation

We consider the steady motion of a body of arbitrary shape through an incom-
pressible viscous fluid at low Reynolds number. In a body-fixed frame, we denote
the body domain by B, the fluid domain exterior to the body by Be, and the body-
fluid interface by Γ . Given a body velocity field v : Γ → R

3, the basic problem
is to find a fluid velocity field u : Be → R

3 and pressure field p : Be → R which
satisfy the classic Stokes equations, which in non-dimensional form are

B

B

Be
Γ

ui,jj − p,i = 0, x ∈ Be

ui,i = 0, x ∈ Be

ui = vi, x ∈ Γ

ui, p→ 0, |x| → ∞.

(1)

Equation (1)1 is the local balance law of linear momentum for the fluid and
(1)2 is the local incompressibility constraint. Equation (1)3 is the no-slip boundary
condition which states that the fluid and the body velocities coincide at each point
of the boundary. The limits in (1)4 are boundary conditions which are consistent
with the fluid being at rest at infinity. Unless mentioned otherwise, all vector quan-
tities are referred to a single basis and indices take values from one to three. Here
and throughout we use the usual conventions that a pair of repeated indices implies
summation, and that indices appearing after a comma denote partial derivatives.

2.2 Solvability

We assume B ∪Γ ∪Be fills all of three-dimensional space, B is open and bounded,
and Be is open and connected. Moreover, we assume Γ consists of a finite number of
disjoint, closed, bounded and orientable components, each of which is a Lyapunov
surface [30]. These conditions on Γ imply that standard results from potential
theory for the Stokes equations may be applied [40,50,53]. Moreover, together
with the continuity of v, they are sufficient to guarantee that (1) has a unique
solution (u, p) among fields with the following decay properties [22,33,40]:

ui = O(|x|−1), ui,j = O(|x|−2), p = O(|x|−2) as |x| → ∞. (2)

The solution (u, p) is smooth in Be, but may possess only a finite number of
bounded derivatives in Be ∪ Γ depending on the precise smoothness of Γ and v.

2.3 Basic flow quantities

The volume flow rate associated with a flow (u, p) and a given oriented surface S
is defined by

Q =

∫

S

ui(x)ni(x) dAx, (3)

where n : S → R
3 is a given unit normal field and dAx denotes an infinitesimal

area element at x ∈ S. When S is closed and bounded, we always choose n to be
the outward unit normal field. In this case, Q quantifies the volume expansion rate
of the domain enclosed by S.
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The fluid stress field associated with a flow (u, p) is a function σ : Be → R
3×3

defined by
σij = −pδij + ui,j + uj,i, (4)

where δij is the standard Kronecker delta symbol. For each x ∈ Be the stress tensor
σ is symmetric in the sense that σij = σji. The traction field f : S → R

3 exerted
by the fluid on a given oriented surface S is defined by

fi = σijnj . (5)

The resultant force F and torque T , about an arbitrary point c, associated with f
are

Fi =

∫

S

fi(x) dAx, Ti =

∫

S

εijk(xj − cj)fk(x) dAx, (6)

where εijk is the standard permutation symbol. As before, when S is closed and
bounded, we always choose n to be the outward unit normal field. In this case, F
and T are loads exerted on S by the fluid exterior to S.

For convenience, we assume all quantities have been non-dimensionalized using
a characteristic length scale ℓ > 0, velocity scale ϑ > 0 and force scale µϑℓ > 0,
where µ is the absolute viscosity of the fluid. The dimensional quantities cor-
responding to {x, u, p, v} are {ℓx, ϑu, µϑℓ−1p, ϑv}, and the dimensional quantities
corresponding to {Q,σ, f, F, T} are {ϑℓ2Q,µϑℓ−1σ, µϑℓ−1f, µϑℓF, µϑℓ2T}.

3 Surface potentials for the Stokes equations

In this section we outline the classic single- and double-layer surface potentials
for the Stokes equations, summarize their main properties, and establish notation
that will be needed in our developments. For further details on the mathematical
properties of these potentials see [32].

3.1 Definition

Let ψ : Γ → R
3 be a given function, which we assume to be continuous unless

mentioned otherwise. Then by the Stokes single-layer potentials on Γ with density
ψ we mean

Vi[Γ,ψ](x) =

∫

Γ

UPF
ij (x, y)ψj(y) dAy

PV [Γ,ψ](x) =

∫

Γ

ΠPF
j (x, y)ψj(y) dAy,

(7)

and by the Stokes double-layer potentials on Γ with density ψ we mean

Wi[Γ, ψ](x) =

∫

Γ

USTR
ijl (x, y)ψj(y)νl(y) dAy

PW [Γ, ψ](x) =

∫

Γ

ΠSTR
jl (x, y)ψj(y)νl(y) dAy.

(8)

Here (UPF
ij ,ΠPF

j ) and (USTR
ijl ,ΠSTR

jl ) are the classic stokeslet (or point-force) and
stresslet solutions of the free-space Stokes equations with pole at y [26,54], and
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ν is the unit normal field on Γ directed outwardly from B. Using the notation
z = x− y and r = |z|, explicit expressions for the stokeslet and stresslet solutions
are

UPF
ij =

δij
r

+
zizj
r3

, ΠPF
j =

2zj
r3

(9)

USTR
ijl =

3zizjzl
r5

, ΠSTR
jl = −

2δjl
r3

+
6zjzl
r5

. (10)

We remark that, due to the linearity of the free-space equations, the above solutions
are defined up to an arbitrary choice of normalization. The choice of normalization
naturally affects various constants in the developments that follow, but is not
crucial in any way; the choice adopted here is taken from [26]. While we only
consider the Stokes potentials with densities in the classic spaces of continuous
functions, they could also be considered on various Sobolev spaces [32].

3.2 Analytic properties

For arbitrary density ψ the single-layer potentials (V [Γ, ψ], PV [Γ,ψ]) and double-
layer potentials (W [Γ,ψ], PW [Γ, ψ]) are smooth at each x /∈ Γ . Moreover, by virtue
of their definitions as continuous linear combinations of stokeslets and stresslets,
they satisfy the homogeneous Stokes equations (1)1,2,4 at each x /∈ Γ .

For arbitrary ψ the functions V [Γ, ψ] and W [Γ,ψ] are well-defined for all x ∈

B ∪ Γ ∪Be. For x ∈ Γ the integrands in (7)1 and (8)1 are unbounded functions of
y ∈ Γ , but the integrals exist as improper integrals in the usual sense [30] provided
that Γ is a Lyapunov surface. The restrictions of V [ψ, Γ ] and W [ψ,Γ ] to Γ are
denoted by V [ψ,Γ ] and W [ψ,Γ ]. These restrictions are continuous functions on Γ
[40]. Moreover, for any x0 ∈ Γ the following limit relations hold [40,53,54]:

lim
x→x0

x∈Be

V [Γ, ψ](x) = V [Γ, ψ](x0) (11)

lim
x→x0

x∈B

V [Γ, ψ](x) = V [Γ, ψ](x0) (12)

lim
x→x0

x∈Be

W [Γ,ψ](x) = 2πψ(x0) +W [Γ, ψ](x0) (13)

lim
x→x0

x∈B

W [Γ,ψ](x) = −2πψ(x0) +W [Γ, ψ](x0). (14)

Notice that, by continuity of ψ and W [Γ, ψ], the one-sided limits in (13) and (14)
are themselves continuous functions on Γ .

In contrast to the case with V [Γ, ψ] and W [Γ,ψ], for arbitrary ψ the func-
tions PV [Γ, ψ] and PW [Γ, ψ] do not exist as improper integrals in the usual sense
when x ∈ Γ . In particular, the integrands in (7)2 and (8)2 are excessively singular
functions of y ∈ Γ . Nevertheless, for sufficiently smooth Γ and ψ, the functions
PV [Γ,ψ] and PW [Γ, ψ] have well-defined limits as x approaches the surface Γ [40,
53,64]. Directly-defined values of PV [Γ, ψ] and PW [Γ,ψ] on Γ may be obtained by
appealing to the theory of singular and hyper-singular integrals [44,48,49].
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3.3 Associated stress fields

For arbitrary density ψ the stress fields associated with the single- and double-layer
potentials are

Σik
V [Γ, ψ](x) =

∫

Γ

ΞPF
ikj (x, y)ψj(y) dAy (15)

Σik
W [Γ,ψ](x) =

∫

Γ

ΞSTR
ikjl (x, y)ψj(y)νl(y) dAy, (16)

where ΞPF
ikj and ΞSTR

ikjl are the stress functions corresponding to the stokeslet and
stresslet solutions in (9) and (10). In particular, we have [26,54]

ΞPF
ikj = −

6zizkzj
r5

, (17)

ΞSTR
ikjl =

2δikδjl
r3

+
3(δijzkzl + δilzjzk + δjkzizl + δlkzizj)

r5
−

30zizjzkzl
r7

. (18)

For arbitrary ψ the single-layer stress field ΣV [Γ, ψ] is smooth at each x /∈ Γ and
is the actual stress field associated with the Stokes flow with velocity field V [Γ, ψ]
and pressure field PV [Γ,ψ]. A similar remark applies to the double-layer stress field
ΣW [Γ, ψ]. For x ∈ Γ and arbitrary ψ the single-layer traction field ΣV [Γ, ψ]ν exists
as an improper integral in the usual sense, but not the double-layer traction field
ΣW [Γ, ψ]ν. Moreover, for sufficiently smooth Γ and ψ the following limit relations
for ΣV [Γ,ψ]ν [40,53] and ΣW [Γ,ψ]ν [53] hold for each x0 ∈ Γ , where we use the
notation xǫ = x0 + ǫν(x0):

lim
ǫ→0

ǫ>0

ΣV [Γ, ψ](xǫ)ν(x0) = −4πψ(x0) +ΣV [Γ,ψ](x0)ν(x0) (19)

lim
ǫ→0

ǫ<0

ΣV [Γ, ψ](xǫ)ν(x0) = 4πψ(x0) +ΣV [Γ,ψ](x0)ν(x0) (20)

lim
ǫ→0

ǫ>0

ΣW [Γ, ψ](xǫ)ν(x0) = lim
ǫ→0

ǫ<0

ΣW [Γ,ψ](xǫ)ν(x0). (21)

The result in (21) is commonly referred to as the Lyapunov-Tauber condition. A
directly-defined value of ΣW [Γ, ψ]ν on Γ may be obtained by appealing to the
theory of hyper-singular integrals [44,48,49].

3.4 Flow properties

Let S be an arbitrary closed, bounded surface which encloses Γ in its interior
domain and let n be the outward unit normal field on S. For arbitrary ψ the
resultant force FV [Γ, ψ], torque TV [Γ,ψ] about an arbitrary point c, and volume
flow rate QV [Γ, ψ] associated with S and the single-layer flow (V [Γ,ψ], PV [Γ, ψ])
are [26]

FV [Γ,ψ] =

∫

S

ΣV [Γ, ψ](x)n(x) dAx = −8π

∫

Γ

ψ(y) dAy (22)

TV [Γ, ψ] =

∫

S

(x− c)×ΣV [Γ, ψ](x)n(x) dAx = −8π

∫

Γ

(y − c)× ψ(y) dAy (23)

QV [Γ, ψ] =

∫

S

V [Γ, ψ](x) · n(x) dAx = 0. (24)
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Because the above results hold for any S which encloses Γ , we can pass to the limit
and conclude that the resultant force, torque, and volume flow rate associated with
Γ and the exterior single-layer flow are also given by these results.

Similar calculations can be performed in the double-layer case. For arbitrary
ψ the resultant force FW [Γ,ψ], torque TW [Γ, ψ] about an arbitrary point c, and
volume flow rate QW [Γ, ψ] associated with S and the flow (W [Γ,ψ], PW [Γ,ψ]) are
[26]

FW [Γ,ψ] =

∫

S

ΣW [Γ, ψ](x)n(x) dAx = 0 (25)

TW [Γ, ψ] =

∫

S

(x− c)×ΣW [Γ,ψ](x)n(x) dAx = 0 (26)

QW [Γ, ψ] =

∫

S

W [Γ,ψ](x) · n(x) dAx = 4π

∫

Γ

ψ(y) · ν(y) dAy. (27)

As before, because the above results hold for any S which encloses Γ , we can pass
to the limit and conclude that the resultant force, torque, and volume flow rate
associated with Γ and the exterior double-layer flow are also given by these results.

4 Boundary integral formulation

Here we outline the two-parameter boundary integral formulation of (1) that is to
be approximated, briefly summarize its main properties, and state a fundamental
existence and solvability result.

4.1 Formulation

Let γ be a surface parallel to Γ offset towards B by a distance φ ≥ 0. In particular,
γ is the image of the map ξ = ϑ(y) : Γ → R

3 defined by

ξ γ
Γ

ν(y)
y

ξ = y − φν(y). (28)

By virtue of the fact that Γ is a Lyapunov surface it follows that the map ϑ : Γ → γ

is continuous and one-to-one for all φ ∈ [0, φΓ ), where φΓ is a positive constant.
In the absence of any global obstructions, we have φΓ = 1/κΓ , where κΓ is the
maximum of the signed principal curvatures of Γ [51]. Here we use the convention
that curvature is positive when Γ curves away from its outward unit normal ν.
As a consequence, the principal curvatures are the eigenvalues of the gradient of
ν (not −ν) restricted to the tangent plane. From the geometry of parallel surfaces
we have the following relations for all y ∈ Γ , ξ = ϑ(y) ∈ γ and φ ∈ [0, φΓ ) [51]:

n(ξ) = ν(y), dAξ = Jφ(y)dAy, Jφ(y) = 1− 2φκm(y) + φ2κg(y). (29)

Here n is the outward unit normal on γ, dAξ and dAy are area elements on γ and
Γ , and κm and κg are the mean and Gaussian curvatures of Γ . For φ ∈ [0, φΓ )
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we denote the inverse of ξ = ϑ(y) by y = ϕ(ξ). In view of (28) and (29)1 we have
y = ξ + φn(ξ).

Given an arbitrary density ψ : Γ → R
3 and number θ ∈ [0, 1] define u : Be → R

3

and p : Be → R by

u = θV [γ,ψ ◦ ϕ] + (1− θ)W [Γ,ψ], p = θPV [γ,ψ ◦ ϕ] + (1− θ)PW [Γ, ψ]. (30)

Notice that the double-layer potentials are defined on the surface Γ with density ψ,
while the single-layer potentials are defined on the parallel surface γ with density
ψ ◦ ϕ. In particular, the two types of potentials are defined on different surfaces,
but involve only one arbitrary density.

By properties of the single- and double-layer potentials, the fields (u, p) are
smooth at each x ∈ Be and satisfy the Stokes equations (1)1,2,4 at each x ∈ Be.
The stress field σ : Be → R

3×3 associated with (u, p) is given by

σ = θΣV [γ,ψ ◦ ϕ] + (1− θ)ΣW [Γ, ψ], (31)

and the resultant force F , torque T about an arbitrary point c, and volume flow
rate Q associated with Γ are

F = θFV [γ,ψ ◦ ϕ], T = θTV [γ, ψ ◦ ϕ], Q = (1− θ)QW [Γ, ψ]. (32)

Here we have used linearity and the flow properties of the single- and double-layer
potentials outlined in Section 3.4.

In order that (u, p) provide the unique solution of the exterior Stokes boundary-
value problem (1), the boundary condition (1)3 must be satisfied. In particular,
given v : Γ → R

3, we require

lim
x→x0

x∈Be

u(x) = v(x0), ∀x0 ∈ Γ. (33)

Substituting for u from (30) and using the limit relation in (13) we obtain a
boundary integral equation for the unknown density ψ:

θV [γ,ψ ◦ ϕ](x0) + (1− θ)W [Γ,ψ](x0) + 2π(1− θ)ψ(x0) = v(x0), ∀x0 ∈ Γ. (34)

From this we can deduce that (u, p) defined in (30) will be the unique solution
of (1) if and only if ψ satisfies (34). By definition of the single- and double-layer
potentials, this equation can be written in integral form as

θ
∫
γ
UPF
ij (x, ξ)ψj(ϕ(ξ)) dAξ

+ (1− θ)
∫
Γ
USTR
ijl (x, y)ψj(y)νl(y) dAy

+ 2π(1− θ)ψi(x) = vi(x), ∀x ∈ Γ,

(35)

where x0 has been replaced by x for convenience. By performing a change of
variable in the first integral this equation can then be put into the operator form

G
θ,φψ +H

θψ + cθψ = v, (36)

where cθ = 2π(1− θ) and

(Gθ,φψ)(x) =

∫

Γ

Gθ,φ(x, y)ψ(y) dAy, Gθ,φ
ij (x, y) = θJφ(y)UPF

ij (x, ϑ(y)), (37)

and

(Hθψ)(x) =

∫

Γ

Hθ(x, y)ψ(y) dAy, Hθ
ij(x, y) = (1− θ)USTR

ijl (x, y)νl(y). (38)
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4.2 Solvability theorem

The following result establishes the solvability of the integral equation (36), equiv-
alently, (34). Its proof is given in [26].

Theorem 1 There exists a unique solution ψ ∈ C0 of the boundary integral equation

(36) for any closed, bounded Lyapunov surface Γ ∈ C1,1, parallel offset parameter

φ ∈ [0, φΓ ), interpolation parameter θ ∈ (0,1) and boundary data v ∈ C0.

The above result implies that the representation in (30) is complete and stable
for any θ ∈ (0,1) and φ ∈ [0, φΓ ). It is complete because arbitrary solutions of the
exterior Stokes boundary-value problem (1) can be represented in the form (30)
with a unique density ψ for each θ and φ. It is stable because it leads to a uniquely
solvable Fredholm equation of the second kind. In particular, for each θ and φ, the
linear operator in (36) has a finite condition number and the density ψ depends
continuously on the data v. The smoothness properties of ψ depend on those of
the surface Γ and the data v.

Various limiting cases of the formulation are well-understood. For arbitrary
φ ∈ [0, φΓ ), the case with θ = 0 in (30) corresponds to a pure double-layer rep-
resentation of (u, p). It is well-known that such a representation is incomplete in
the sense that it can represent only those flows for which the resultant force and
torque on Γ vanish, that is, F = 0 and T = 0 [40,50,53,54]. Equivalently, the
range of the linear operator in (36) is deficient, leading to solvability conditions
and non-uniqueness for ψ. For arbitrary φ ∈ [0, φΓ ), the case with θ = 1 in (30) cor-
responds to a pure single-layer representation of (u, p). It is well-known that such
a representation is also incomplete in the sense that it can represent only those
flows for which the volumetric expansion rate of Γ vanishes, that is, Q = 0 [40,
50,53,54]. Equivalently, the range of the linear operator in (36) is again deficient,
leading to solvability conditions and non-uniqueness for ψ. For arbitrary θ ∈ (0,1),
the single-layer operator is weakly singular when φ = 0 and non-singular or reg-
ular when φ > 0. Moreover, various degeneracies can occur in the limit φ → φΓ
depending on Γ , for example the area of the parallel surface, and consequently the
single-layer potential, may vanish in this limit.

Aside from the restriction of solvability, the parameters θ and φ are arbitrary
and can be exploited. For example, they might be chosen to optimize the condition
number of the linear operator in (36). While this condition number is finite for
all θ ∈ (0,1) and φ ∈ [0, φΓ ), it becomes unbounded as θ → 0 and θ → 1 because
the limiting operators have non-trivial null spaces as discussed above. Moreover,
depending on Γ , it may also become unbounded as φ → φΓ because the parallel
surface may vanish, or other types of degeneracies may occur; roughly speaking,
the larger the value of φ, the more difficult it may be for the single-layer operator
on the parallel surface to complete the range of the double-layer operator on the
original surface. Based on these considerations, it is reasonable to expect that
optimal conditioning might occur near the point (θ, φ) = (1/2, 0). This expectation
will be confirmed by our numerical experiments which show that the formulation
is indeed rather well-conditioned for a wide range of parameter values near this
point. In our developments below, we restrict attention to the regularized case
with φ > 0. As we will see, a simple and efficient numerical method which does
not require the treatment of weakly singular integrals can be constructed for this
regularized case, which is a main motivation for considering it.
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5 Locally-corrected Nyström approximation

In this section we describe a numerical method for the boundary integral equation
(36). We introduce a general family of locally-corrected Nyström methods, and
then present solvability and convergence results for the lowest-order method in
the family under minimal regularity assumptions consistent with classic potential
theory [30,47].

5.1 Mesh, quadrature rule

We consider an arbitrary decomposition of Γ into non-overlapping quadrature
elements Γ e, e = 1, . . . , E, each with area |Γ e| > 0. To any such decomposition
we associate a size parameter h = maxe(diam(Γ e)) > 0. For simplicity, we assume
that the elements are either all quadrilateral or all triangular. In our analysis, we
consider sequences of decompositions with increasing E, or equivalently, decreasing
h. We will only consider sequences that satisfy a uniform refinement condition in
the sense that the area of all elements is reduced at the same rate. Specifically, we
assume

Ch2 ≤ |Γ e| ≤ C′h2, ∀e = 1, . . . , E, E ≥ E0. (A1)

Here C, C′ and E0 are positive constants whose values may change from one
appearance to the next.

In each element Γ e, we introduce quadrature nodes xeq and weights W e
q > 0,

q = 1, . . . , Q, where Q is independent of e, such that

∫

Γ

f(x) dAx =
E∑

e=1

∫

Γ e

f(x) dAx ≈

E∑

e=1

Q∑

q=1

f(xeq)W
e
q . (39)

We assume that the quadrature nodes and weights are defined by mapping each
element Γ e to a standard, planar domain using a local parameterization, and ap-
plying a local quadrature rule in the standard domain. In this case, the Jacobian
of the parameterization would be included in the weightsW e

q . We assume that the
quadrature weights remain bounded and that the quadrature points remain dis-
tinct and in the element interiors. Specifically, for any sequence of decompositions
that satisfy the uniform refinement condition, we assume

Ch2 ≤
∑Q

q=1W
e
q ≤ C′h2, ∀e = 1, . . . , E, E ≥ E0,

Ch ≤ dist(xeq, ∂Γ
e) ≤ h, ∀q = 1, . . . , Q, e = 1, . . . , E, E ≥ E0,

Ch ≤ min
(e,q) 6=(e′,q′)

|xeq − xe
′

q′ | ≤ h, ∀q, q′ = 1, . . . , Q, e, e′ = 1, . . . , E, E ≥ E0.

(A2)

To quantify the error in a quadrature rule for a given function f on a given
surface Γ , we introduce the normalized local truncation errors

τ(e, f, h) =
1

|Γ e|

∣∣∣∣∣

∫

Γ e

f(x) dAx −

Q∑

q=1

f(xeq)W
e
q

∣∣∣∣∣ , e = 1, . . . , E. (40)
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For sequences of decompositions that satisfy a uniform refinement condition, we
require that the above truncation errors vanish uniformly in e depending on prop-
erties of f . Specifically, we assume there exists an integer ℓ ≥ 1 such that

max
e

τ(e, f, h) → 0 as h→ 0 for each f ∈ C0,

max
e

τ(e, f, h) ≤ Chℓ for each f ∈ Cℓ−1,1.
(A3)

In the above, the constant C may depend on f , but is independent of e and h, and
the integer ℓ ≥ 1 is called the order of convergence of the quadrature rule.

For convenience, we will often replace the element and node indices e = 1, . . . , E
and q = 1, . . . , Q with a single, general index a = 1, . . . , n, where n = EQ. We will
use the multi- and single-index notation interchangeably with the understanding
that there is a bijective map between the two.

5.2 Partition of unity functions

To each quadrature node xa in a decomposition of Γ we associate nodal parti-
tion of unity functions ζa and ζ̂a. Specifically, we assume that these functions are
continuous and take values in the interval [0,1], and are complementary so that
ζa(x) + ζ̂a(x) = 1 for all x ∈ Γ . Moreover, we assume that ζa vanishes at least
quadratically in a neighborhood of xa, and that the support of ζ̂a is bounded from
above by a multiple of the mesh parameter h. Specifically, we assume

|ζa(x)| ≤
C|x− xa|

2

h2
, diam(supp(ζ̂a)) ≤ Ch, ∀a = 1, . . . , n, n ≥ n0. (A4)

Appropriate functions ζa and ζ̂a for each node xa can be constructed as fol-
lows. Consider an auxiliary decomposition of Γ into Voronoi cells, where each cell
contains a single quadrature point. Each cell can be mapped to a unit circle, with
xa mapped to the center. A simple quadratic function z = (x2 + y2)/2 in the unit
circle can be mapped back to the cell as the central part of ζa. We can then intro-
duce an offset boundary which is displaced outward from the cell boundary by a
distance of ε/2, where ε = mina 6=b |xa−xb|. The mapped quadratic function, which
by design has the value 1/2 on the cell boundary, can be extended to achieve a
value of 1 on the offset boundary, and then further extended to the rest of Γ with
the constant value 1 as illustrated in Figure 1. Notice that the functions ζa and
ζ̂a so constructed have the convenient nodal property that ζa(xb) = 1 − δab and
ζ̂a(xb) = δab.

The nodal partition of unity functions ζa and ζ̂a play an important role in the
family of numerical methods that we introduce and in the associated convergence
proofs. Specifically, these functions will help isolate the weak singularity of the
double-layer kernel Hθ at each quadrature point and control the numerical error
there. We remark that the construction outlined above leads to admissible partition
of unity functions for the lowest-order method; admissible functions for higher-
order methods would be different.
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Fig. 1 Illustration of the partition of unity functions ζa(x) and ζ̂a(x) associated with a quadra-
ture node xa.

5.3 Discretization of integral equation

Let a decomposition, quadrature rule, and nodal partition of unity functions for Γ
be given. For any function f , let Gθ,φ

h
and Hθ

h denote approximations to Gθ,φ and
Hθ of the form

(Gθ,φ
h
f)(x) =

n∑

b=1

Gθ,φ
b

(x)f(xb), (Hθ
hf)(x) =

n∑

b=1

Hθ
b (x)f(xb), (41)

where Gθ,φ
b

and Hθ
b are functions to be specified. Moreover, in view of (36), let ψh

denote an approximation to ψ defined by

G
θ,φ
h
ψh +H

θ
hψh + cθψh = v. (42)

The equation for ψh can be reduced to an n × n linear system for the nodal
values ψh(xa). Indeed, from (41) and (42) we get, for each a = 1, . . . , n,

n∑

b=1

Gθ,φ
b

(xa)ψh(xb) +
n∑

b=1

Hθ
b (xa)ψh(xb) + cθψh(xa) = v(xa). (43)

Notice that, for every solution of the discrete system (43), we obtain a solution of
the continuous system (42), namely

ψh(x) =
1

cθ

[
v(x)−

n∑

b=1

Gθ,φ
b

(x)ψh(xb)−
n∑

b=1

Hθ
b (x)ψh(xb)

]
. (44)

Moreover, the converse is also true; every solution of the continuous system pro-
vides a solution of the discrete system by restriction to the nodes.

The method is completed by specifying the functions Gθ,φ
b

(x) and Hθ
b (x). In

view of (37), (39) and (41)1, we define Gθ,φ
b

(x) = Gθ,φ(x, xb)Wb. However, due
to the weakly singular nature of the kernel function Hθ(x, y), a similar definition
cannot be made for Hθ

b (x), because H
θ(x, xb) is not continuous or even defined

when x = xb. Instead, for any integer p ≥ 0 we define

Hθ
b (x) = ζb(x)H

θ(x, xb)Wb + ζ̂b(x)R
θ
x(xb), (45)

where Rθ
x(xb) is a local polynomial of degree p at x, evaluated at quadrature point

xb. By a local polynomial at x we mean a polynomial in any system of rectangular
coordinates in the tangent plane with origin at x. For a Lyapunov surface Γ , such
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polynomials are well-defined in an open neighborhoodOx of each point x, and there
is a uniform bound on the size of this neighborhood. The unknown coefficients in
Rθ
x(xb) are determined by enforcing the local moment conditions

(Hθ
h ηxfx)(x) = (Hθ ηxfx)(x), for all local polynomials fx up to degree p. (46)

Here ηx is any given non-negative, cutoff function which is identically one in a
fixed neighborhood of x, and which is identically zero outside of Ox. The above
conditions lead to a linear system of equations for the unknown coefficients in
Rθ
x(xb), which can be solved for any given point x.
In this article, we consider only the lowest-order method with p = 0. In this

case, the local polynomial Rθ
x reduces to a constant polynomial depending on x,

the neighborhood Ox can be taken as the entire surface Γ , and the cutoff function
ηx can be taken as unity. In view of (38) and (41)2, the moment condition in (46)
with constant fx yields

Rθ
x =

∫
Γ
Hθ(x, y) dAy −

∑n
b′=1 ζb′(x)H

θ(x, xb′)Wb′∑n
b′=1 ζ̂b′(x)

. (47)

Notice that Rθ
x is well-defined and bounded for any sequence of decompositions

by properties of the nodal functions ζb and ζ̂b and the kernel function Hθ. The
integral in the above expression can be evaluated exactly. Indeed, using the fact
that constants are eigenfunctions of the Stokes double-layer potential [24,52,54,
56], we have ∫

Γ

Hθ(x, y) dAy = −cθI, ∀x ∈ Γ, (48)

where I is the identity matrix of the same dimension as Hθ. The lowest-order
method is thus defined by (41)–(45), with Rθ

x(xb) ≡ Rθ
x given by (47)–(48).

The nodal equations in (43) for the approximation ψh can be put into a par-
ticularly simple form. Indeed, because our choice of the nodal partition of unity
functions ζa and ζ̂a has the property that ζa(xb) = 1 − δab and ζ̂a(xb) = δab, the
equations become

n∑

b=1

Gθ,φ(xa, xb)ψh(xb)Wb +
n∑

b=1

b6=a

Hθ(xa, xb)[ψh(xb)− ψh(xa)]Wb = v(xa). (49)

Once the nodal values of ψh are determined, they can be extended to a continuous
function using the interpolation equation in (44). The discrete system above is
similar to the classic singularity subtraction method discussed by various authors
[8,37]. The factor [ψh(xb)−ψh(xa)] can be interpreted as cancelling the weak sin-
gularity in Hθ(xa, xb). Indeed, since the sum extends over b 6= a only, the product
Hθ(xa, xb)[ψh(xb)− ψh(xa)] can be interpreted as vanishing when b = a. We re-
mark that different choices of the partition of unity functions ζa and ζ̂a could be
made, which would lead to different nodal equations. However, the solvability and
convergence results described below are independent of any specific choice.

The discrete system (49) can be written in a more standard form. Specifically,
after collecting terms, we get

n∑

b=1

Aθ,φ(xa, xb)ψh(xb) = v(xa), ∀a = 1, . . . , n, (50)
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where

Aθ,φ(xa, xb) =





Gθ,φ(xa, xb)Wb +Hθ(xa, xb)Wb, a 6= b

Gθ,φ(xa, xa)Wa −

n∑

c=1

c 6=a

Hθ(xa, xc)Wc, a = b.

(51)

This linear system is dense and non-symmetric, and can be solved using any suit-
able numerical technique.

5.4 Approximation of flow quantities

Various flow quantities of interest take the form of an integral of ψ over Γ . For
example, from (32), the resultant force and torque on Γ about an arbitrary point
c are given by

F = −8πθ

∫

γ

ψ(ϕ(ξ)) dAξ,

T = −8πθ

∫

γ

(ξ − c)× ψ(ϕ(ξ)) dAξ.

(52)

After a change of variable (see Section 4.1), these integrals can be transformed
from the parallel surface γ to the body surface Γ to obtain

F = −8πθ

∫

Γ

Jφ(y)ψ(y) dAy,

T = −8πθ

∫

Γ

Jφ(y)(ϑ(y)− c)× ψ(y) dAy.

(53)

By discretizing these integrals using the same quadrature points and weights as
before, we get the approximations

Fh = −8πθ
n∑

b=1

Jφ(xb)ψh(xb)Wb,

Th = −8πθ
n∑

b=1

Jφ(xb)(ϑ(xb)− c)× ψh(xb)Wb.

(54)

An approximationQh to the volume flow rate Q associated with Γ can be obtained
in a similar manner.

5.5 Solvability and convergence theorem

The following result establishes the solvability and convergence of the locally-
corrected Nyström method defined in (41)–(45) and (47)–(48). We consider only
the method with a local polynomial correction of degree p = 0, together with any
quadrature rule of order ℓ ≥ 1.
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Theorem 2 Under conditions (A1)–(A4), there exists a unique approximation ψh ∈

C0 for any closed, bounded Lyapunov surface Γ ∈ C1,1, parallel offset parameter φ ∈

(0, φΓ ), interpolation parameter θ ∈ (0,1) and boundary data v ∈ C0 for all h > 0
sufficiently small. Moreover, if ψ ∈ Cm,1 and Γ ∈ Cm+1,1, then as h→ 0

||ψh − ψ||∞ → 0, ∀ℓ ≥ 1,m ≥ 0,

||ψh − ψ||∞ ≤ Ch, ∀ℓ ≥ 1,m ≥ 1.

Thus, under suitable assumptions, the method defined by (41)–(45) and (47)–
(48) is convergent in the usual maximum or C0-norm. The rate of convergence
depends on the regularity index m of the exact solution ψ and the surface Γ . In
the minimal regularity case withm = 0, there is no lower bound on the rate, and in
the higher regularity case with m ≥ 1, the rate is at least linear. The linear rate is
independent of the order ℓ ≥ 1 of the quadrature rule due to the low degree p = 0 of
the polynomial correction. Indeed, higher rates of convergence could be obtained
with higher degrees of correction. Notice that the linear rate of convergence is
a lower bound; it could possibly be higher in certain circumstances, for example
in smooth problems with periodicity, for which some quadrature rules are known
to have special properties [15,39]. We remark that the method considered here is
based on open quadrature rules as required by condition (A2). The entire family of
methods with arbitrary degree of correction p ≥ 0 for a general class of boundary
integral equations is studied in a separate work [28].

Notice that a discrete version of the above theorem in terms of purely nodal
quantities defined via the system in (50) also holds. Specifically, the theorem es-
tablishes the convergence of the nodal error maxb |ψh(xb) − ψ(xb)| without the
explicit need for the Nyström interpolation formula in (44) and the nodal parti-
tion of unity functions. Moreover, the conditions of the theorem are met by the
simplest of quadrature rules; for example, one-point rules of the barycentric type
for triangular or quadrilateral elements on their standard domains would be suf-
ficient. As a result, the theorem establishes the convergence of a method similar
to the classic singularity subtraction method as considered previously by various
authors [8,37]. The two methods lead to apparently identical discrete systems for
the nodal approximations, but differ in how the nodal approximations are inter-
polated over the surface. Convergence results for this method appear to be not
well-known. The proof of the results outlined here makes crucial use of the struc-
ture of the nodal functions Hθ

b (x) defined in (45), the moment conditions defined
in (46), and various properties of the nodal partition of unity functions ζb and ζ̂b.
Such ingredients appear to have not been considered in previous studies of the
classic method.

The proof of the theorem consists of three main steps and is based on the
theory of collectively compact operators [7], which plays a fundamental role in the
analysis of Nyström methods [10,36]. Specifically, on the space C0, we consider
the operator Aθ,φ and the family of operators Aθ,φ

h
defined as

A
θ,φ = G

θ,φ +H
θ, A

θ,φ
h

= G
θ,φ
h

+H
θ
h. (55)

The first step in the proof is to establish the uniform continuity and uniform con-
vergence of Aθ,φ

h
f on Γ for each f , and thereby establish the collective compactness

of the family A
θ,φ
h

. The second step is to bound the approximation errors between
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A
θ,φ
h
f and Aθ,φf on Γ under different regularity assumptions on f . In the third

step, a fundamental estimate for collectively compact operators then allows us to
bound the error between ψh and ψ by the error between A

θ,φ
h
ψ and Aθ,φψ. The

detailed proof of the theorem is presented in a separate work [28] and relies on a
Tricomi-like property of the Stokes double-layer potential. A proof under different
regularity assumptions and conditions can be found in [43, Theorem 7.4.3].

Another implication of the above theorem is that the approximate flow quan-
tities Fh, Th and Qh converge to their exact values F , T and Q at the same rate as
ψh converges to ψ. This follows from the fact that F , T and Q are bounded linear
functionals on the space C0 and that ψh converges to ψ in C0. Just as before, in
the minimal regularity case with m = 0, there is no lower bound on the rate of
convergence of Fh, Th and Qh, and in the higher regularity case with m ≥ 1, the
rate is at least linear. Moreover, the rate could possibly be higher than linear in
certain circumstances as discussed above.

6 Numerical experiments

Here we illustrate the convergence and conditioning of the lowest-order, locally-
corrected Nyström method introduced above. We present results for four different
body geometries of varying symmetry, genus, curvature and regularity: an ellipsoid,
torus, straight tube and helical tube. In the latter two cases the tube ends were
closed with hemi-spherical endcaps. For each body, we computed the maximum
and minimum singular values of the coefficient matrix in (50) and examined its
condition number, in the standard Euclidean norm, as a function of the parameters
θ and φ. For one or more prescribed motions of each body, we also computed the
resultant force and torque about the origin of a body-fixed frame, and examined
various measures of convergence for different values of θ and φ.

6.1 Methods

In accordance with the Nyström scheme, we decomposed the surface of each body
into non-overlapping patches, each of which was parameterized over a planar,
rectangular domain. We then subdivided each patch into quadrilateral elements,
and in each element we used a d×d tensor product Gauss-Legendre quadrature rule,
where d = 1 or 2, with order of convergence ℓ = 2d. For the ellipsoid we employed
six patches based on stereographic projection from the faces of a bounding cube.
For the torus we employed a single patch based on an explicit parameterization of
the axial curve. For the straight and helical tubes we employed multiple patches
based on explicit parameterizations of the axial curve and endcaps.

Singular values, and consequently the condition number, of the coefficient ma-
trix in (50) were computed using standard matrix routines for the singular value
decomposition. The resultant force F and torque T on each body were approxi-
mated by solving the linear algebraic system (50) of size (3EQ) × (3EQ), where
E is the total number of elements and Q = d2 is the number of quadrature points
per element. Because this system was non-symmetric and well-conditioned, we
used a GMRES iterative solver with no pre-conditioning and a residual tolerance
of 10−8 as implemented in Matlab. Using the solution of (50), we computed the
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approximations Fh and Th according to (54). The total number E of elements for
each surface was varied up to a maximum value of approximately 3250, and the
number Q of quadrature points per element was either 1 or 4, hence the total
number 3EQ of unknowns in the linear system was varied up to a maximum value
of approximately 39000.

6.2 Results

Ellipsoid example. Figure 2 shows conditioning results as a function of θ and φ for
an ellipsoid. The ellipsoid was centered at the origin and defined by the equation
x2/a2 + y2/b2 + z2/c2 = 1 with (a, b, c) = (1, 0.8,0.6). Results are given for the
1 × 1 Gauss rule and two different meshes. The fineness of a mesh is quantified
by the element size parameter h, which is proportional to the maximum element
size, and also the average element size because of the quasi-uniform nature of the
mesh. Results for the 2× 2 rule were nearly identical and are omitted for brevity.

Plot (a) of Figure 2 illustrates the geometry of the ellipsoid. The ellipsoid
parameters were chosen so as to produce a surface with moderate, non-constant
curvature. When a ≥ b ≥ c > 0, the maximum curvature is κΓ = a/c2, which gives
a maximum offset distance of φΓ = c2/a for the parallel surface. Plot (b) shows
the singular values σmin ≥ 0 and σmax ≥ 0 as a function of θ ∈ (0,1) for different
values of φ/φΓ ∈ (0,1) for two different meshes. The results for the two meshes are
indistinguishable and suggest that the singular values converge rather quickly with
respect to the element size h. In agreement with the results outlined in Section 4.2,
σmin is non-zero and vanishes only when θ → 0 and θ → 1. For each fixed φ, we
observe that σmin has a single local maximum and no local minimum with respect
to θ, whereas σmax has a single local minimum and no local maximum. For each
fixed θ, we observe that σmin and σmax both increase as φ decreases.

Plot (c) shows the condition number σmax/σmin as a function of θ ∈ (0,1) for
different values of φ/φΓ ∈ (0,1) for two different meshes. Because the condition
number becomes unbounded as θ → 0 and θ → 1, we consider only a restricted
domain away from these limits for clarity. As in plot (b), the results for the two
meshes are indistinguishable. For each fixed φ, we observe that the condition num-
ber has a single local minimum and no local maximum with respect to θ. For each
fixed θ, we observe that the condition number decreases as φ decreases, except
near the right boundary of the θ-domain. In agreement with the expectations dis-
cussed in Section 4.2, optimal conditioning occurs near θ = 1/2 for small φ > 0.
Notice that, in the limit case φ = 0, the single-layer operator in our formulation
becomes weakly singular, which would require special treatment. The plots show
that any choice of parameters with θ ∈ [1/3,2/3] and φ/φΓ ∈ [1/8,1/2] would yield
an extremely well-conditioned linear system with a relatively mesh-independent
condition number σmax/σmin ≤ 101.1.

Figure 3 shows convergence results for the resultant force and torque about the
origin on the ellipsoid obtained with the 1× 1 and 2× 2 quadrature rules. Results
are given for two different parameter pairs: (θ, φ/φΓ ) = (1/2,1/4) and (1/2,1/2).
Moreover, results are given for two independent boundary conditions: translation
along the x-axis with unit velocity, and rotation about the same axis with unit
angular velocity. By symmetry, the force and torque have the form F = (Fx, 0, 0)
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Fig. 2 Conditioning of Nyström system with 1×1 Gauss quadrature rule for an ellipsoid. (a):
Illustration of geometry. (b): Plot of singular values σmin and σmax versus θ for fixed values
of φ. The dotted horizontal line provides a reference for the two vertical scales. (c): Plot of
log of condition number σmax/σmin versus θ for fixed values of φ. Dots, crosses, pluses, stars,
squares, diamonds and triangles denote results for φ/φΓ = 1/8, 2/8, . . . , 7/8. Solid and dashed
lines (completely overlapped) denote results for h = 0.10, 0.07.

and T = (0,0, 0) for the translational motion, and F = (0,0,0) and T = (Tx, 0, 0)
for the rotational motion.

Plots (a) and (b) of Figure 3 show convergence results for the magnitudes of
Fh and Th in the translational and rotational motions, respectively, as a function
of the element size parameter h. In all computations the appropriate entries in
both Fh and Th were found to be zero within machine precision for each type of
motion. Thus the errors illustrated can be attributed to the appropriate non-zero
components. The data reveals that different values of the parameter pair (θ, φ/φΓ )
can lead to different convergence characteristics. For the parameter pair (1/2,1/4),
the magnitudes of Fh and Th approach their asymptotic values monotonically as
h decreases for the range of meshes considered. In contrast, for the parameter pair
(1/2,1/2), the magnitudes of Fh and Th approach their asymptotic values in a non-
monotonic manner. This behavior is illustrated in plot (c), which is a magnified
view of the data in plot (b).

Plots (d) and (e) of Figure 3 show the differences in the computed values of Fh

and Th between successive meshes as a function of h for each of the two motions.
The different convergence characteristics corresponding to the different values of
(θ, φ/φΓ ) is evident. For the parameter pair (1/2,1/4), the solution differences de-
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Fig. 3 Convergence results for resultant force F and torque T on an ellipsoid. Computations
were performed with a sequence of meshes with element sizes hk. (a),(b): Plots of |Fhk

| and
|Thk

| versus 1/hk for the translational and rotational motion, respectively. (c): Magnified view
of (b). (d),(e): Plots of log10 |Fhk

−Fhk−1
| and log10 |Thk

−Thk−1
| versus log10(1/hk) for the

translational and rotational motion, respectively. Upward-pointing triangles and circles denote
results for the 1× 1 and 2× 2 rules with (θ, φ/φΓ ) = (1/2, 1/4). Downward-pointing triangles
and squares denote results for the 1× 1 and 2× 2 rules with (θ, φ/φΓ ) = (1/2, 1/2).

crease monotonically as the mesh is refined, whereas for the pair (1/2,1/2), the
solution differences behave non-monotonically. This behavior is a simple conse-
quence of the monotonicity or non-monotonicity of the corresponding curves in
plots (a) and (b). In particular, local extrema in the curves in (a) and (b) cause
local extrema in the curves in (d) and (e), which become magnified by virtue of
the log scale. For the force data in plot (d), non-monotonicity becomes apparent
only on rather refined meshes (where the GMRES tolerance becomes an issue),
whereas for the torque data in plot (e), it becomes apparent on modest meshes.
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Fig. 4 Conditioning of Nyström system with 1 × 1 Gauss quadrature rule for a torus. (a):
Illustration of geometry. (b): Plot of singular values σmin and σmax versus θ for fixed values
of φ. The dotted horizontal line provides a reference for the two vertical scales. (c): Plot of
log of condition number σmax/σmin versus θ for fixed values of φ. Dots, crosses, pluses, stars,
squares, diamonds and triangles denote results for φ/φΓ = 1/8, 2/8, . . . , 7/8. Solid and dashed
lines (completely overlapped) denote results for h = 0.03, 0.02.

For any sequence hk → 0 of decreasing mesh sizes, our convergence result in
Theorem 2 implies that |Fhk

− F | → 0 and |Thk
− T | → 0, where the conver-

gence rate is at least linear due to the regular nature of the geometry and data.
Because the exact values F and T are not known, we instead can examine the
errors |Fhk

− Fhk−1
| and |Thk

− Thk−1
|, whose convergence rate must also be at

least linear by the triangle inequality. The behavior of these errors is illustrated
in plots (d) and (e). Due to the non-linear nature of the curves in these plots it
is difficult to assign meaningful convergence rates. Nevertheless, in the non-linear
but monotonic case corresponding to the parameter pair (1/2,1/4), the observed
rates were significantly higher than linear or first-order: the observed rates were
between eighth- and twelfth-order. Interestingly, the observed rates for the 1 × 1
rule were as high or higher than those for the 2× 2 rule in this case. Although the
convergence curves for (1/2,1/4) are better behaved than those for (1/2,1/2), the
numerical accuracies achieved with the second pair are, for the most part, higher
than those achieved with the first. For the 2× 2 rule with the pair (1/2,1/4), the
relative changes in Fh and Th between the finest two meshes were each of order
10−7. For the same quadrature rule and the pair (1/2,1/2), the relative changes
in Fh and Th were each of order 10−9.

Torus example. Figure 4 shows conditioning results as a function of θ and φ

for a torus, which in contrast to the previous example has a different genus and
principal curvatures of varying sign. The axial curve of the torus was a circle of
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Fig. 5 Convergence results for resultant force F and torque T on a torus. Computations
were performed with a sequence of meshes with element sizes hk. (a),(b): Plots of |Fhk

| and
|Thk

| versus 1/hk for the translational and rotational motion, respectively. (c),(d): Plots of
log10 |Fhk

−Fhk−1
| and log10 |Thk

−Thk−1
| versus log10(1/hk) for the translational and rota-

tional motion, respectively. Upward-pointing triangles and circles denote results for the 1 × 1
and 2 × 2 rules with (θ, φ/φΓ ) = (1/2, 1/4). Downward-pointing triangles and squares denote
results for the 1× 1 and 2× 2 rules with (θ, φ/φΓ ) = (1/2, 1/2).

radius ρ = 1 centered at the origin in the xy-plane, and the tube section was a
circle of radius r = 0.2. Results are given for the 1×1 Gauss rule and two different
meshes. As for the ellipsoid, results for the 2× 2 rule were nearly identical and are
omitted for brevity. Plot (a) illustrates the geometry. The torus parameters were
chosen so as to produce a slender tubular surface with rather high curvature. For
this surface the maximum curvature is κΓ = 1/r, which gives a maximum offset
distance of φΓ = r. Plots (b) and (c) are analogous to the ellipsoid example. As
before, the results for the two meshes are indistinguishable. In agreement with
the results outlined in Section 4.2, σmin is non-zero and vanishes when θ → 0 and
θ → 1. Moreover, in contrast to the case with the ellipsoid, σmin also vanishes
in the limit φ/φΓ → 1 because the parallel surface degenerates to zero area in
this case. The behavior of the singular values and the condition number is similar
to that observed before. As with the ellipsoid, optimal conditioning occurs near
θ = 1/2 for small φ > 0, although here slightly larger values of θ are favored.
Any choice of parameters with θ ∈ [1/3,2/3] and φ/φΓ ∈ [1/8,1/2] would yield
an extremely well-conditioned linear system with a relatively mesh-independent
condition number σmax/σmin ≤ 101.6.

Figure 5 shows convergence results for the resultant force and torque about
the origin on the torus obtained with the 1× 1 and 2× 2 quadrature rules. Results
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Fig. 6 Conditioning of Nyström system with 1× 1 Gauss quadrature rule for a straight tube.
(a): Illustration of geometry. (b): Plot of singular values σmin and σmax versus θ for fixed
values of φ. The dotted horizontal line provides a reference for the two vertical scales. (c):
Plot of log of condition number σmax/σmin versus θ for fixed values of φ. Dots, crosses, pluses,
stars, squares, diamonds and triangles denote results for φ/φΓ = 1/8, 2/8, . . . , 7/8. Solid and
dashed lines (completely overlapped) denote results for h = 0.14, 0.11.

are given for two different parameter pairs: (θ, φ/φΓ ) = (1/2,1/4) and (1/2,1/2).
Moreover, results are given for two independent boundary conditions: translation
along the x-axis with unit velocity, and rotation about the same axis with unit
angular velocity. As before, by symmetry, the force and torque have the form
F = (Fx, 0,0) and T = (0,0, 0) for the translational motion, and F = (0,0, 0)
and T = (Tx, 0,0) for the rotational motion. Plots (a) through (d) of Figure 5 are
analogous to the ellipsoid example. In our computations, we again found that the
appropriate entries in both Fh and Th were zero within machine precision for each
type of motion. Moreover, for the range of meshes considered, we found that the
two values of the pair (θ, φ/φΓ ) produced convergence characteristics similar to
those observed before: monotonic convergence for (1/2,1/4), and non-monotonic
convergence for (1/2,1/2). The non-monotonicity for this latter case is apparent in
the force data in plot (c). In the monotonic case corresponding to (1/2,1/4), the
observed rates for solution differences were significantly higher than first-order: the
observed rates were approximately sixth-order. As before, the numerical accuracies
achieved with (1/2, 1/2) are higher than those achieved with (1/2,1/4). For the
2 × 2 rule with the pair (1/2,1/4), the relative changes in Fh and Th between
the finest two meshes were of order 10−5 and 10−4, respectively. For the same
quadrature rule and the pair (1/2,1/2), the relative changes in Fh and Th were of
order 10−6 and 10−5, respectively.



24 J. Li and O. Gonzalez

4 8 12 16 20
22.8

22.85

22.9

22.95

23

1/h

|F
|

(a)

5 10 15 20

132.5

133

133.5

1/h

|T
|

(b)

0.8 1 1.2 1.4
−6

−5

−4

−3

−2

−1

log
10

 1/h

lo
g

1
0
 |∆

 F
|

(c)

0.8 1 1.2 1.4
−5

−4

−3

−2

−1

0

log
10

 1/h

lo
g 10

 |∆
 T

|

(d)

Fig. 7 Convergence results for resultant force F and torque T on a straight tube. Computa-
tions were performed with a sequence of meshes with element sizes hk. (a),(b): Plots of |Fhk

|
and |Thk

| versus 1/hk for the translational and rotational motion, respectively. (c),(d): Plots
of log10 |Fhk

− Fhk−1
| and log10 |Thk

− Thk−1
| versus log10(1/hk) for the translational and

rotational motion, respectively. Upward-pointing triangles and circles denote results for the
1 × 1 and 2 × 2 rules with (θ, φ/φΓ ) = (1/2, 1/4). Downward-pointing triangles and squares
denote results for the 1× 1 and 2× 2 rules with (θ, φ/φΓ ) = (1/2, 1/2).

Straight tube example. Figure 6 shows conditioning results as a function of θ and
φ for a straight tube, which in contrast to the previous examples is non-smooth
but in the C1,1 regularity class due to jumps in curvature. The axial curve of
the tube was a line segment along the z-axis of length ℓ = 2π centered at the
origin. The tube had uniform, circular cross-sections of radius r = 0.2, and hemi-
spherical endcaps of the same radius. Results are given for the 1 × 1 Gauss rule
and two different meshes. As before, results for the 2×2 rule were nearly identical
and are omitted for brevity. Plot (a) illustrates the geometry. For this surface the
maximum curvature is κΓ = 1/r, which gives a maximum offset distance of φΓ = r.
Plots (b) and (c) are analogous to the previous examples. As before, the results
for the two meshes are indistinguishable. In agreement with the results outlined
in Section 4.2, σmin is non-zero and vanishes when θ → 0, θ → 1 and φ/φΓ → 1.
The behavior of the singular values and the condition number is similar to that
observed before. Optimal conditioning again occurs near θ = 1/2 for small φ > 0.
Any choice of parameters with θ ∈ [1/3,2/3] and φ/φΓ ∈ [1/8,1/2] would yield
an extremely well-conditioned linear system with a relatively mesh-independent
condition number σmax/σmin ≤ 101.8.

Figure 7 shows convergence results for the resultant force and torque about
the origin on the straight tube obtained with the 1× 1 and 2× 2 quadrature rules.
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Fig. 8 Conditioning of Nyström system with 1× 1 Gauss quadrature rule for a helical tube.
(a): Illustration of geometry. (b): Plot of singular values σmin and σmax versus θ for fixed
values of φ. The dotted horizontal line provides a reference for the two vertical scales. (c):
Plot of log of condition number σmax/σmin versus θ for fixed values of φ. Dots, crosses, pluses,
stars, squares, diamonds and triangles denote results for φ/φΓ = 1/8, 2/8, . . . , 7/8. Solid and
dashed lines (completely overlapped) denote results for h = 0.14, 0.11.

Results are given for two different parameter pairs: (θ, φ/φΓ ) = (1/2,1/4) and
(1/2,1/2). Moreover, results are given for two independent boundary conditions:
translation along the x-axis with unit velocity, and rotation about the same axis
with unit angular velocity. Again, by symmetry, the force and torque have the
form F = (Fx, 0,0) and T = (0,0, 0) for the translational motion, and F = (0,0, 0)
and T = (Tx, 0, 0) for the rotational motion. Plots (a) through (d) of Figure 7
are analogous to the previous examples. We again found that the appropriate
entries in both Fh and Th were zero within machine precision for each type of
motion. In contrast to before, we found that each of the two values of the pair
(θ, φ/φΓ ) produced non-monotonic convergence characteristics for the range of
meshes considered. The non-monotonicity is apparent in the data in plots (c) and
(d). As before, the numerical accuracies achieved with (1/2,1/2) are, for the most
part, higher than those achieved with (1/2, 1/4). For the 2 × 2 rule with the pair
(1/2,1/4), the relative changes in Fh and Th between the finest two meshes were
each of order 10−5. For the same quadrature rule and the pair (1/2,1/2), the
relative changes in Fh and Th were of order 10−7 and 10−6, respectively.

Helical tube example. Figure 8 shows conditioning results as a function of θ and
φ for a helical tube, which is non-smooth but in the C1,1 regularity class due to
jumps in curvature and is less symmetric than the previous examples. The axial
curve of the tube was a helical curve about the z-axis with radius ρ = 2, pitch
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Fig. 9 Convergence results for resultant force F and torque T on a helical tube. Computa-
tions were performed with a sequence of meshes with element sizes hk. (a),(b): Plots of |Fhk

|
and |Thk

| versus 1/hk . (c),(d): Plots of log10 |Fhk
− Fhk−1

| and log10 |Thk
− Thk−1

| versus

log10(1/hk). Upward-pointing triangles and circles denote results for the 1× 1 and 2× 2 rules
with (θ, φ/φΓ ) = (1/2, 1/4). Downward-pointing triangles and squares denote results for the
1× 1 and 2× 2 rules with (θ, φ/φΓ ) = (1/2, 1/2).

λ = 3, and arclength ℓ = 2π. The tube had uniform, circular cross-sections of
radius r = 0.2, and hemi-spherical endcaps of the same radius. Results are given
for the 1× 1 Gauss rule and two different meshes. Again, results for the 2× 2 rule
were nearly identical and are omitted for brevity. Plot (a) illustrates the geometry.
For this surface the maximum curvature is κΓ = 1/r, which gives a maximum offset
distance of φΓ = r. Plots (b) and (c) are analogous to the previous examples. As
before, the results for the two meshes are indistinguishable. In agreement with
the results outlined in Section 4.2, σmin is non-zero and vanishes when θ → 0,
θ → 1 and φ/φΓ → 1. The behavior of the singular values and the condition
number is similar to that observed previously. Optimal conditioning again occurs
near θ = 1/2 for small φ > 0. Any choice of parameters with θ ∈ [1/3, 2/3] and
φ/φΓ ∈ [1/8,1/2] would yield an extremely well-conditioned linear system with a
relatively mesh-independent condition number σmax/σmin ≤ 101.8.

Figure 9 shows convergence results for the resultant force and torque about
the origin on the helical tube obtained with the 1× 1 and 2× 2 quadrature rules.
Results are given for two different parameter pairs: (θ, φ/φΓ ) = (1/2,1/4) and
(1/2,1/2). In contrast to the previous examples, results are given for a single
boundary condition: rotation about the x-axis with unit angular velocity. In this
case, the resultant force and torque are not known to have any special form. Plots
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Ellipsoid Torus Straight Tube Helical Tube
Parameters hmax hmin hmax hmin hmax hmin hmax hmin

θ = 1
2

1× 1 9 9 8 8 14 15 25 26

φ/φΓ = 1
4

2× 2 9 9 9 9 15 15 25 25

θ = 1
2

1× 1 9 9 8 8 17 17 37 37

φ/φΓ = 1
2

2× 2 9 9 10 10 17 17 37 37

Table 1 Number of GMRES iterations with relative error 10−8

(a) through (d) of Figure 9 are analogous to the previous examples, with the
exception that only one type of motion is considered. For this single motion the
force and torque were each found to possess three non-zero components in contrast
to before. As in the case of the straight tube, we found that each of the two values
of the pair (θ, φ/φΓ ) produced non-monotonic convergence characteristics for the
range of meshes considered. The non-monotonicity is apparent in the data in plots
(c) and (d). As before, the numerical accuracies achieved with (1/2,1/2) are, for
the most part, higher than those achieved with (1/2,1/4). For the 2× 2 rule with
the pair (1/2,1/4), the relative changes in Fh and Th between the finest two meshes
were each of order 10−5. For the same quadrature rule and the pair (1/2,1/2), the
relative changes in Fh and Th were of order 10−7 and 10−6, respectively.

Linear solve characteristics. Table 1 shows the number of GMRES iterations,
without pre-conditioning, required to solve the linear algebraic system (50) for
all our examples. Results are given for the coarsest and finest meshes for each
geometry as indicated by the element size parameters hmax and hmin. In agreement
with the conditioning results outlined above, the number of iterations is relatively
small for each of the parameter pairs (θ, φ/φΓ ) and geometries considered, and is
relatively independent of the mesh and quadrature rule. The data reveals a slight
dependence of the iteration count on the pair (θ, φ/φΓ ) and a moderate dependence
on the geometry. This dependence is consistent with our observations that the pair
(1/2,1/4) generally leads to a better conditioned system than (1/2, 1/2), and that
the condition numbers for the ellipsoid and torus were lower than those for the
straight and helical tubes.
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