SIAM J. AppL. MATH © XXXX Society for Industrial and Applied Mathematics
Vol. 0, No. 0, pp. 000-000

SUPPLEMENTARY MATERIALS: Theorems on the Stokesian Hydrodynamics
of a Rigid Filament in the Limit of Vanishing Radius*

Oscar Gonzalez'

Here we provide details for the proofs of Lemmas 4.1-4.3. Numbers with the label S
denote equations and references within this supplement; numbers without this label refer to
the main article.

Proof of Lemma 4.1. We first consider the resistance problem, in which the quantities
(V, 2,u>®,p>) are given, and (F&' T y* pt) are sought. In view of (2.1)—(2.4), we in-
troduce the shifted fields wt = ut — u® and g™ = p™ — p*°, and consider a decomposition

wh =wT — @t and ¢* = qg* — q*, where (w",¢") and (w,q") satisfy
Auwt =VqT, Awt = Vg, r e DT
V-wt =0, V.ot =0, x € DT
(SMOl) 1’2}’+:V+QX($_C)’ ,L’l}-‘r:,uoo7 .'EGF
{E+7E]V+ _>0707 7:0\+,E]\+—>0,0, ’1" — Q.

Since I' is closed, bounded and Lyapunov, and the boundary data V + 2 x (x — ¢) and u™
are continuous, it follows from classic results of potential theory for the Stokes equations
[SM2, SM4, SM5, SM6] that each of the two systems in (SM0.1) has a unique solution. The
fields (w*,¢") and (w,q") are smooth in D, and w* and @* are continuous up to I". Due to
the rigid-body form of the boundary data for (w™,g"), the associated traction field bt =g *v
is guaranteed to be continuous up to I" [SM3, SM4, SM5], and from integral moments of ht we
obtain well-defined resultant loads (F,T). Since the boundary data for (w*,g") is not only
continuous, but also in the Sobolev space H 1/2 on I', the associated traction field At = 5t v
is guaranteed to be in the dual space H ~1/2 [SM1], which implies that integral moments of
h* and hence resultant loads (F, T ) are also well-defined. In view of (2.7) and (2.8), and the
fact that the far-field flow (u°,p>) generates zero loads (F°°,7°°) = (0,0) on any closed
boundary, the external loads are well-defined and given by (F®t T) = (F F,T - T).
Hence, given (V, £2,u, p>), there is a unique flow (u*,p™) = (w* + u>, ¢" + p>), which
is k-times continuously differentiable in DT, and unique external loads (F®* T) for the
resistance problem. Moreover, the assumption that o[u™,p™] is continuous up to I" implies
that o[w™, ¢"] must also be continuous up to I', which will be exploited below.

We next consider the mobility problem, in which (F® T 4% p>) are given, and
(V,2,ut,pt) are sought. In this case, just as before, the second system in (SM0.1) has
a unique solution (", "), with well-defined resultant loads (F,T). For the first system in
(SMO0.1), the loads (F,T) = (F — F™* T — T°%) are now given, and the flow fields (@, §")
and body velocities (V, £2) are unknown. Due to the rigid-body form of the given and unknown
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data on I', the first system in (SMO0.1) has a unique solution for (w™,q") and (V, ) [SM3].
As before, the fields (w™,q") and (@1, ") are smooth in DT, with wt and @™ continuous up
to I'. Hence, given (F®t T 4> p>) there is a unique flow (u™, p™) = (w* +u>, ¢" +p™),
which is k-times continuously differentiable in D, and unique body velocities (V, £2) for the
mobility problem. The assumption that o[u™,p*] is continuous up to I' again implies that
olw™, ¢"] must also be continuous up to I

As a companion to the exterior problem, regardless of its type (resistance or mobility), we
may consider an auxiliary interior problem for fields (w™, ¢~ ), namely

Aw™ =Vq~, x € D™
(SMO0.2) V-w™ =0, x e D™
wm=V+02x(x—c)—u>, rxel.

Since the boundary data is continuous and satisfies |’ rw” v dA; =0, this interior problem
has a solution, where w™~ is unique, and ¢~ is unique up to an additive constant C' [SM4,
SM5, SM6]. By inspection, the general solution in this case is w™ =V + 2 x (z — ¢) —u*™ and
g~ = —p> 4+ C. We note that (w™,q~) are k-times continuously differentiable in D~, with
w™ and o[w™, ¢~ ] continuous up to I.

Well-known results for the Stokes equations, based on the fundamental solution of the
equations and the divergence theorem, imply that the solution of the systems in (SMO0.1)
and hence the overall exterior fields (w™, ") possess a natural representation involving both
the single- and double-layer Stokes potentials [SM4, SM5, SM6, SM7]. Sufficient conditions
for this representation are that (wt,q"™) be twice continuously differentiable in DT, with
wt and ofw™, ¢*] continuous up to I', and decaying at infinity. Similarly, the interior fields
(w™,q) also possess such a representation, and for this it is sufficient that (w™,q~) be
twice continuously differentiable in D™, with w™ and o[w™,¢~] continuous up to I'. The
assumed regularity up to the boundary implies that, in both the exterior and interior cases,
the representations hold with continuous densities. By combining the two representations,
and using the fact that wt = w™ on I', the double-layer terms can be eliminated to obtain
purely single-layer representations for (w*,¢%) and (w™, ¢ ). Specifically, we find

(SM0.3) wt (@) =UILYl@),  ¢*(2) = PILY)@w), veD*

with the continuous density ¢ = g=(c[w™,¢~] — o[w™, ¢])v on I'. This representation holds
for any choice of the pressure constant C' in the interior flow (the single-layer velocity potential
has a one-dimensional nullspace), and for convenience we take C' = 0. By direct computation
we have o[w™,q¢"| = —o[u™®,p™®], and by construction we have o[w™’,¢"| = ofu™,p*] —
o[u®, p*°], which implies ¢ = —%ﬁh*. Hence the expressions in (4.5) and (4.6) are established.

The boundary integral equation in (4.7) follows from (4.5)1, together with the boundary
conditions in (2.2); and (2.4), and the limit relation in (4.3).

Proof of Lemma 4.2. In view of (4.2) and (4.8) we have
(SM0.4) E(z) =I(z) + A(z),

where

1 0ii 1 (. —y)i(r —y);
SMO.5 Ji'x:/ I dA,, Ai'x:/ L dA,.
( ) i (@) 8t Jr,.. |z — ] Y i(@) 87 1, |z — g3 v
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By properties of weakly-singular integrals, we note that the components J;;(x) and A;;(z)
are well-defined and continuous functions of € I «, for each r» > 0, and here we seek to
characterize their limits as » — 0.

To begin, we consider the first term in (SM0.4). Let « € I 4 be given, and without
loss of generality assume 6, = 0, so that z = (r,0,s,) with —L < s, < L. Using the local
coordinate representations y = (r cos 6, rsinfy, s,) and dA, = rdf,ds,, we have

2 Oix
SMO0.6 Jij(x) 2 rdf,ds,.
( ) ! 87T/ / V122 = 2cos0y) + (sz — s5y)? e

For convenience, let ¢ = 60, and ¢ = sy — s;, and define 0, 4 = L — s, > 0 and 0, =
—L —s; <0, and note that o, = 0 and 0, — = 0 only at the endpoints s, = L and s, = —L.
In terms of ¢ and o we have

(SMO.7) Jij(x) rdgdo.

2w
87?/ / \/r22—2cosqb + 02

Introducing the additional change of variable o = rn, the integral can be written in the form

(SM0.8) 35(0) =2 [ T o dn T / T
. i\ L) = )
J 8 0 K 17 8 0 " "
where f(n) is a positive, even function defined by
2m 1
(SMO0.9) f(n) = d¢, n#0.

0 V(2—2cos¢) + n?

It will be useful to characterize the behavior of f(n) in the limits n — 07 and n — oo.
Noting that the integrand and interval are symmetric about ¢ = 7, and using the change of
variable ¢ = 2¢, we get

(SM0.10)

T 2) /2 4
= do = —_—— d
/0 V(2 —2cos¢) +n? ¢ /o \/4sin? & 4+ n? <

To characterize the limit as n — 07, let € € (0, %) be fixed, and consider the decomposition

€ 4 w/2 4
(SMO.11) :/ _— d§+/ —d
0 4sin?&+n? e /4sin?&+n?
For the first term above, we introduce the change of variables ¢ = 2sin& so that dt =

V4 — 12 d¢. Noting that V4 —e2 < V4 —12 < 2 for all 0 < t < ¢, where € = 2sin€, and
noting that (¢ + n?)~1/2 dt can be evaluated in closed form, we obtain

4 €+
(SM0.12)  Sln (

/ 4 1n(€—|— +n )
\/4sin? §—|—17 \/4—62 7
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The above inequality shows that the first term in (SM0.11) grows logarithmically, whereas the
second term remains bounded, and hence f(n) — oo as n — 07. Indeed, combining (SM0.11)

and (SM0.12), we find that 2 < lim, o+ [f(n)/ln(%)] < \/44_7. From this we deduce, by the

arbitrariness of e, that

fn)

n—0t ln(%) N

(SM0.13)

To characterize the limit as 7 — 0o, let € > 0 be fixed, and note that 1 < 1+ 4sin?(¢)/n? <
1+ €2 for all n > 2/e. In view of (SM0.10) we obtain

2T
< —.

o7 /2 4
—= < —F—d{ <
nv1+ € 0 4sin?&4n? n

The above shows that f(n) — 0 as n — oo; specifically, by the arbitrariness of €, we obtain

(SMO0.14)

(SMO0.15) lim ——= = 27.

n—oo =

Next, given any € > 0, the limits in (SM0.13) and (SMO0.15) imply the following inequalities
for some intervals (0, a.) and (b, 00), where a. < 1 and b > 1,

(SM0.16) 2—€e< f(q) <24¢ ne(0,a),
ln(g)
(SM0.17) 2r —e < o) <2m+¢€, n€E (be,0).

=

Multiplying the first inequality by ln(%), and integrating over (0, a¢), we get

(SMO.18) (2 — )ae(l — Ina) < /0 F7) dn < (2 + )ac(1 — Inay).

Similarly, multiplying the second inequality by %, and integrating over (b, c) for any ¢ > b,
we obtain

(SMO0.19) (2m —€)(Inc—Inb) < ) f(n)dn < (27 +e€)(Inc—Inb).
be

Using (SM0.18) and (SM0.19) we can examine the behavior of J;;(x) in the limit » — 07 for
any given « € I 4, and € > 0. From (SMO0.8) we have

Jij(x) by RO+ 5 Liog,—|
(SM0.20) rin(l) 8771n(i)/0 f(n) d"*smn(i)/o f(n) dn.

For the first integral in (SM0.20) we have the decomposition

%az’+ Qe be %O'I,Jr
(SM0.21) /0 F(n) dn = /0 F(n) dn + / F(n) dn + /b f(n) dn,
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which holds for all 0 < r < i min{o ;,|0s,—|} so that Lo, | > be. Since the integrals over
(0,a¢) and (ac,be) are fixed and independent of r, they will vanish in the following limit, and
we obtain

1
1 7 oz,+

i rOot L 1
(SM0.22) lim, ) /O f(n) dn = lim_ () /b f(n) dn.

€

Using (SMO0.19) with ¢ = 10, 1, and noting that Inc = In(1) 4+ Ino, ;, we obtain

T T

1 [roe
(SM0.23) 2m —e < lim 1)/ f(n) dn < 2w+,
7)Jo

r—0t ln(

which by the arbitrariness of € implies that the value of the limit is 2r. The same arguments
can be used to examine the limit of the second integral in (SMO0.20), and the value of the
limit is also 27. These results hold for any given x € I 4, so that —L < s, < L and hence
0z+ > 0 and |0, | > 0. Results for the endpoints s, = =L can also be considered; in this
case, either o, 4 or |0, _| is zero, and the right-hand side of (SMO0.20) reduces to only one
integral. Thus we have a pointwise limit result for the function J;;(z), namely

jw(x) %5@', Sy € (—L,L),

r—0+ 7 In(L)

(SMO0.24)

=

Zéij’ Sy = +L.

We next consider the second term in (SM0.4), and since A;;(z) = Aj;(x), there are six
independent components to examine. Proceeding as before, let x € I} &, be given, and without
loss of generality assume 6, = 0, so that © = (r,0, s,) with —L < s, < L. In local coordinates
we have y = (rcosfy,7sinb,, sy), so that (z —y)1 = r(1 —cosby), (z —y)2 = —rsinf, and
(x —y)3 = sz — sy, and moreover dA, = rdfyds,. In view of (SMO0.5), the component A1 (x)
is given by

1 Lo r2(1 — cosf,)?
SMO0.25 A = Y df,ds,.
( ) () 8 /—L/O [r2(2 — 2 cos0y) + (s — sy)?]3/2 "y

Introducing ¢ = 0,, 0 = s, — s, and o = rn as before, the integral can be written in the form

r

1 1
70z,+ r ?‘UI,—l
SMO.26 An(z) = = d p
( ) 11(z) 877/0 f1(n) 77+87r/0 fi1(n) dn,

where f11(n) is a positive, even function defined by

I (1 — cos ¢)?
SMO0.27 = do, 0.
Straightforward arguments using the fact that 1 — cos¢ > 0 show that 0 < f11(n) < C for
all n € (0,1), and 0 < f11(n) < C/n? for all € [1,00). Here and throughout C' denotes a
positive constant whose value may change from one appearance to the next. From this we
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1 1
deduce that each of the integrals [ 7" fi1(n) dn and [y 7| f11(n) dn is bounded uniformly
in 7 since

(SM0.28) AmﬁmﬂMSC.

Thus we obtain a pointwise limit result for the function A (z), namely
Au(z) _ 0, sz e(—L,L),

SMO0.29
( ) r—0+ rin(d)

0, sp==L.

The above pointwise limit will similarly vanish for all components A;;(x) except Asz(x).
For Aja(z) and Ag3(z), the integrals themselves vanish for each > 0 due to the fact that the
integrands are odd functions of 6, about 6, = . For Ai3(x) we get

r

%‘Uz,f‘ r %Uzv+
(SM0.30) Az(x) = 8/ f13(n) dn — / fi3(n) dn,
T Jo 8 0

where fi3(n) is an odd function defined by

(1 - cosd)n
2 —2cos ¢) + n?]

2

Arguments using the fact that 1 — cos ¢ > 0, and the inequality
(SM0.32) n < [(2—2cos¢) + n??,

show that 0 < fi3(n) < C for all n € (0,1), and 0 < f13(n) < C/n? for all € [1,00), which
similar to before implies

(SM0.33) /0 " fisln) dn < C.

The above bound then implies a vanishing limit as in (SM0.29). For Ags(x) we get

r

1 1
;Ux7+ r F‘U-Z,—l
MO.34 A - dn + — d
(SMO0.34) 22(7) & /0 f22(n) nt g /O f22(n) dn,

where fo9(n) is a positive, even function defined by

sin? ¢
2 — 2cos ¢) + n?|

27
(SM0.35) foaln) = /0 : 5o, A0
Arguments based on the fact that 1 —cos¢ > 0 and 1 + cos ¢ > 0, and the inequality

(SMO0.36) sin? ¢ = %(1 +cosd)(2 —2cos¢p) < %(1 + cos ¢)[(2 — 2 cos ¢) + 17,
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show that 0 < fao(n) < f(n) for all n € (0,1), and 0 < fao(n) < C/n? for all n € [1, 00), where
f(n) is the function in (SM0.9). Hence, by the integrability of f(n) on (0,1) established in
(SM0.18), we obtain

(SM0.37) /0 b faza(n) dn < C,

which implies a vanishing limit as in (SMO0.29). For the remaining component Ass(x) we get

r

1 1
79z, + r ?‘UZ,—l
SMO0.38 A — dn 4+ — d
( ) 33() o /0 f33(n) U /O f33(n) dn,

where f33(n) is a positive, even function defined by

2 2
i
SMO0.39 = do, 0.
Similar to before, it will be useful to characterize the behavior of f33(n) in the limits
n — 07 and n — oo. Noting that the integrand and interval are symmetric about ¢ = 7, and
using the change of variable ¢ = 2§, we get

SMO0.40 " 20 d " Sl d

(SM0.40) fas(n) = /0 [(2 = 2cos ¢) + n2]3/2 ¢= /0 [4sin® £ 4 7?]3/2 3

To characterize the limit as  — 07, let € € (0, %) be fixed, and consider the decomposition
€ 4172 /2 4772

SMO0.41 = d a

( ) fas(n) /0 [4sin € + n2]3/2 §+/g [4sin? £ + n?2]3/2 ¢

For the first term above, we again introduce the change of variables ¢ = 2sin £ so that dt =
V4 — 12 d¢. Noting that v4 — €2 < /4 — 2 < 2for all 0 < t < ¢, where € = 2sin¢€, and noting
that foe n?(t? 4+ n?)~3/2 dt can be evaluated in closed form, we obtain

4 € € 4nm? 4 €
5 < ) d§ < :
2/ +n2 " Jo [4sin® € +n?]3/2 Vi—e /2 +n?

The above inequality shows that the first term in (SMO0.41) remains bounded and positive,
whereas the second term vanishes, and hence f33(n) is bounded and positive as n — 0F.
Indeed, combining (SM0.41) and (SM0.42), we find that 2 < lim,_,o+ f33(n) < \/4%7

this we deduce, by the arbitrariness of ¢, that

(SMO0.42)

. From

(SMO0.43) lim+ fas(n) = 2.

n—0

To characterize the limit as 7 — oo, let € > 0 be fixed, and note that 1 < 1+ 4sin?(¢)/n? <
1+ €2 for all n > 2/e. In view of (SM0.40) we obtain

o /2 4n? o
SMO.44 < de < %
( ) [l + €32 /0 [45in” € 4 72]3/2 =5
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The above shows that f33(n) — 0 as n — oo; specifically, by the arbitrariness of €, we obtain

(SM0.45) lim 1380 _ o
n—00 %

Using the same arguments as in (SM0.16)—(SM0.24), we obtain a pointwise limit result for
the function Asz(z), namely

, Sz S <_L7L)7

D[

(SMO0.46) lim 2330 _
r—0+ rIn(:)

%, Sp = xL.

All the above results derived under the convenient assumption 8, = 0 also hold for 6, # 0;
the two cases differ by a simple rotation of coordinates about the axis of I'.4,. Hence, by
combining the above results with (SM0.4), and using the notation in (4.10), we obtain the
following limit for each point z = (0, s5) € I} str,

1 -1
595rs (0z,82) €10,2m) x (=L, L),
(SM0.47) i E@r (0w, 52)) _

1
r—0t  rn(1) %gs_ti? (0, 82) €[0,27) x {£L}.

To establish convergence in the Li-norm, we again consider the integrals appearing in the
scaled component functions J;;(z)/[rIn(2)] and A;(z)/[rin(2)]. In view of the preceding
developments, the integrals in these scaled functions are one of two basic forms, Hy(z) or
H_(z), where

%U:c,+ %"7907—‘
(SMO0.48) H(z) = 1n(11) /0 h(n) dn,  H_(r)= hl(ll) /0 h(n) dn.

(s s

Here h(n) is a continuous function for n > 0 that depends on the specific component J;;(x) or
Aij(x), and has the general property

C+C(l), o0<n<,

MO0.4 < <
(SMO.49) O_h(n)_{C/n, 1<n<oo.

By combining (SMO0.48) and (SM0.49) we find, by a direct evaluation of the integrals, and
recalling the notation © = x,(0, ), 04+ = L — sy and |04 | = L + s,

0 < Hy(zr(0z,5:)) < C+ClIn(L — s)|
(SMO0.50) (602, 52) € [0,27) x (—L, L),

0 < H_(2,(0z,5z)) <C+ C|In(L + sz)|
which holds for all 0 < r < 1 so that In(1) > 1. Since each of the functions H (2, (0, s;))
and H_(z,(0s,sz)) is dominated by a fixed integrable function, we note, by the Dominated
Convergence Theorem, that Hy(x,(05,s;)) and H_(z,(0z,s;)) converge to their pointwise
limits in the Li-norm on (0,,s;) € [0,27) x (—L, L) as r — 07. From this we deduce that the
limit in (SM0.47) converges in the L;-norm.
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Proof of Lemma 4.3. Given a curved cylindrical surface I ¢y, as defined in (4.13), let
I'.str be a corresponding straight cylindrical surface of the same radius and arclength, as
defined in (4.9). We assume that the axial curve v of I5 ¢ is open so that v(—L) # v(L); the
case when v is closed will be discussed later. Let Zery = @ erv(0z, S2) and Yerv = Yr.crv(Oy, Sy)
denote points on I cry, and let zgy = Zystr(0z, 55) and ysir = Yrstr(6y, Sy) denote points on
I str. We will consider these surfaces for r € (0, p], where p € (0,a,) is a fixed constant, and
ay > 0 denotes the injectivity radius of 7. For r € (0, p] we note that there is a one-to-one
correspondence between I g, and I ¢ry, which we indicate with the notation ey = Zery (Zstr)
and Yerv = Yerv(Ystr). The map from I to I} orvy will be detailed below.

In what follows it will be useful to consider the ratio of chord lengths between pairs of
points on I, and the corresponding pairs on I . Specifically, for any r € (0, p] and
Tstr, Ystr € Lstr With Tgir # Ystr, We consider the ratio

‘xstr - ystr’
|xcrv (wstr) — Yerv (ystr)’

(SM0.51) W(Tstrs Ystr) =

From the Lipschitz continuity of v, 4/, and d;, together with the fact that v has a positive
injectivity radius, we find that w(Zstr, Ystr) is uniformly bounded and positive; that is, there
are positive constants C; and C5 such that

(SMO52) C < W(xstra ystr) < Cs.

It will also be useful to have an explicit expression for the chord (Zcry — Yery) in terms of the
chord (zsty—¥str). Using the map from I sty t0 I cry, we have ey = al, di (23,)+a2, do(23,)+
V(@d) and Yerv = Y di (Y3) + Ve d2(Y) + 7(yS:)- From the Lipschitz continuity of v, 7/,
and d;, we note that each of the preceding quantities at y3, can be replaced with a quantity

at 22, and a remainder term, which gives

3

2
(SMO'53) (xcrv - ycrv) = Z(:U;tr - yétr)di(sz) - Z y&rRa(Sx7 Sy)O' - RO(SIM Sy)027
=1 a=1

where y3,, = sy, 23, = sz, 0 = 8, — 84, and the coefficients Ry (s, s,) and Ro(sz, sy) of the
remainder terms are defined and uniformly bounded for all s, # s;. Identifying the vectors
d;(s;) as the columns of an orthogonal matrix Q(s;) € R3*3, so that d;(s.) = Q(sz)ei, we
note that 327 (zk, — vl )di(s2) = Q(52)(Zstr — Ystr)- Taking the dot product of each side of
(SMO0.53) with itself, we obtain

|Zerv — Yerv|?
(SMO0.54) = |Tstr — ysmr’2 - 2(Q(Sx)($str - ystr)) : (yg;rRa(Sma sy)0 + Ro(sz, Sy)UQ)
+ (ys‘trRa(sm, 5y)0 + Ro(8z, sy)az) . (ysﬁtrR,g(sw, sy)0 + Ro(sz, sy)a2).
In the above, sums over a = 1,2 and = 1,2 are implied. Dividing through by |2zt — ystr|?

and using (SM0.51), and noting that yk, = rcos6, and y%, = rsinf,, and also noting that
lo| < |Zstr — Ystr|, we obtain the bound

1
) - 1‘ < Dir+ D2‘$str - ystr|a

SMO0.55 ‘7
( ) w? (fL'stra Ystr
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where D21 and Do are positive constants. Introducing the quantity m = w — 1, we find that
m = (£5)(1— ), and from (SM0.55) and (SM0.52) we obtain the important decomposition

wH1
(SMO0.56) W(Tstr, Ystr) = 1+ m(Tstr, Ystr)
where
(SM0.57) Im(Zstr, Ystr)| < D17 + Da|Tstr — Ystel-

All the above results hold for r € (0, p|] and Zgtr, Ystr € Irstr With Zger # Ystr, where Cy, Co,
Dy and D are positive constants independent of xg,, ystr and r.
In view of (4.2) and (4.17) we have

(SMO0.58) E(z) =I(z) + A(z),
where

1 0ij 1 (x—y)i(r —y);
MO. Jis = — T dA A = — I dA,,.
(SM059)  Ty(x) 8wlhwu—yr p Aa) 8WAhW Pt )

Similar to before, the components J;;(x) and A;;(z) are well-defined and continuous functions
of x € I’ oy for each » > 0, and here we seek to characterize their limits as r — 0t.

We consider the first term in (SMO0.58). To begin, let z = z(2gr) € I} v be given, and at
any point y = y(ystr) € Icrv note that dAy = Jp(ystr)dAy,,,, where J, is the Jacobian factor
given in (4.14). Performing a change of variable in the integral, and using the chord ratio in
(SM0.51), we get

1 50.}(1' tr ystr)
SMO0.60 Jij(x :/ R Y/ dA,,..
( ) Z]( ) iy Iy str ’xstr - ystr| r(ystr) bt
Moreover, introducing 9 = wdJ, — 1, and using w = 1 + m, we obtain the relation ¥ =

m + w(J, —1). In view of (SMO0.52) and (SMO0.57), and the fact that |J, — 1| < Cr which
follows from (4.14), we find

(SMO-61) ’ﬁ(xstra ystrﬂ <Dir+ DQ‘mstr - ystr"

By definition of ¥, the integral in (SM0.60) can be decomposed as

1 (51 1 1 5@ 79 Ty T
SM062) (o) =g [ Ly g [ ) gy
Fr,str “’BStr Fr,str

N 87 - ystr| 8T ‘xstr - ystr|

Considering the scaled component functions J;;(z)/[rIn(2)], and using the same type of ar-
guments as in the proof of Lemma 4.2, we find that the second term vanishes in the limit
r — 0T, whereas the first term is exactly the term considered in the straight case. Hence
we obtain the following pointwise limit for each z = %y crv(0,52) € Iy v, Which as before
converges in the Li-norm, where Id € R3*3 denotes the identity,

$1d, (0, s5) €[0,27) x (=L, L)
2 ) Ty OT s , ,
(SM0.63) lim J(z:r,crlv(ef,sz)) _

r—0 rIn(y) %Id, (s, 52) € [0,27) x {£L}.
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We next consider the second term in (SMO0.58). To begin, we use (SM0.53) to obtain the
outer product relation
(xcrv - ycrv) X (wcrv - ycrv)

SMO0.64
( ) = Q(Sx) [(-rstr - ystr) 02y (xstr - ystr)] QT(SCE) + B(-'L'stry ystr)a

where

B(:L'str» ystr)
(SMO.65) = —2sym [(Q(Sx)(ﬁstr - ystr)) ® (ysatrRoz(Soca Sy)a + RO(SHU’ Sy)0'2)]
+ (Y% Ra(82, 8y)0 + Ro(sz,8)0°) ® (ysﬁtng(sm, $y)0 + Ro(85,84)07).
In the above, sums over = 1,2 and § = 1,2 are implied, Q(s,) is an orthogonal matrix

whose columns are d;(s;), and sym A = (A + AT) for any square matrix A. Performing a
change of variable in the second term of (SM0.58), and using (SM0.51), we get

1 v TV v T TV 3 T iy
(SMO66) .A(.T) / [(1'(3 Ye ) X (37(3 Ye )]w (xst Yst ) JT(yStr)dAystr'
Fr,str

B g ‘xstr - ystr‘3

Using (SM0.64), and introducing ¢ = w3J, — 1 similar to before, the above integral can be
decomposed into three parts

(SMO0.67) Az) = A0 (2) + AV (z) + AP (2),
where
1 Q(Sz)[(ivstr - ystr) ® (xstr - ystr)]QT(Sz)
(0) -
R I o) 3 Bt Uy,
1 B(xstru ystr)
SMO0.69 AWM = / ——C dA,.,.,
( ) (x) 87 Ty str “rstr - ystr|3 pour

8T ‘xstr - ystr|3

_A(Z) («T) i / [Q(SI)[(xstr - ystr) ® (xstr - ystr)]QT(Sz)
Ir str

(SM0.70)
B(-Tstra ystr)

+
’xstr - ystr|3

C(mstm ystr) dAyStr-

We next consider the scaled function A(z)/[rIn(2)], decomposed as in (SM0.67), and
examine the limit 7 — 0%. For the term A (z), we note that the integral is exactly as
considered in the straight case in Lemma 4.2, up to a rotation Q(s,), which is fixed and can
be taken outside of the integral and the limit. For the term A (z), we use the coordinate
relations yk, = rcosfy, and y2, = rsinf,, and the inequality || < |Zstr — Ystr|, to note that
the factor B(xstr, Ystr) in (SMO0.65) will contain terms of the following orders: 7|zt — Ystr|?,
|Tstr — Yste | 72 Tstr — Ystr |2, 7 Tste — Ystr|>5 and |Tser — yste|*. For the terms of orders 7|t — ystr |2
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and 72| zs; — Ystr|2, We note that the factor of |zs — ystc|? leads to weakly-singular integrals
with a bounded limit as considered in detail in the proof of Lemma 4.2, and the additional
factors of r and 72 lead to vanishing limits. For the remaining terms of orders |Tstr — ystr|3,
| Zste — Ystr|® and |Tger — Yste|?, we note that the factor of |zger — yste|® is sufficient to lead to
integrals that vanish in the limit. For the term A(?)(z), we use the definition of ¢, along with
(SM0.56) and (SM0.57), and the bounds |J,| < C and |J, — 1| < Cr which follow from (4.14),
to obtain

(SMO?l) ’C(xstra ystr)‘ < Dir+ DQ’xstr - ystr|7

which implies that the integral vanishes in the limit. Hence, for the scaled function A(z)/[r In(2)],
we find that only the first term in (SM0.67) is non-vanishing in the limit 7 — 0T, and the
result is a rotated version of the straight case considered in Lemma 4.2. Using the fact that
Q(sz)[es ® e3]QT (sz) = d3(sz) ® d3(ss), we obtain the following pointwise limit for each
T = Ty crv(0z, 82) € I crv, which as before converges in the Lj-norm,

A(Zr.er(0z, 52)) %(d3 ®d3)(sz), (e, 5:) €10,2m) x (=L, L),

SMO0.72 li =
( ) ri%l"' T ln(%)

1(ds ®ds)(s2), (0,sz) € 0,27) x {£L}.

By combining the results in (SMO0.72) and (SM0.63) with (SM0.58), and using the relation
ds(sz) = 7'(sz) and the notation in (4.16), we obtain the following limit for each point
T = Ty crv(0z, 52) € I} crv, which converges in the Li-norm,

1471 0.,5:) €[0,27) x (=L, L)
e (0 29 (Sx)a ( xSz ) y L)y

(SM0.73) lim (xml ( f"%)) -
o0t ring) L61(s,), (Oarss) € [0,27) x {£L}.

In establishing the above result, we assumed that the curve v was open with a Lipschitz
unit tangent field, and also non-self-intersecting, so that its injectivity radius was positive.
However, we note that the above result relies only on local properties of v, and hence also
applies to the case when the curve is closed, provided it has a Lipschitz unit tangent at the
closure point, and is non-self-intersecting except for the closure point. In this case, the (one-
sided) results for s, = —L and s, = L should be summed, and the value of the limit is
397 (sy) for all s,.
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