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Chapter 3

NON-EUCLIDEAN GEOMETRIES

In the previous chapter we began by adding Euclid’s Fifth Postulate to his five common

notions and first four postulates. This produced the familiar geometry of the ‘Euclidean’

plane in which there exists precisely one line through a given point parallel to a given line

not containing that point. In particular, the sum of the interior angles of any triangle was

always 180° no matter the size or shape of the triangle. In this chapter we shall study

various geometries in which parallel lines need not exist, or where there might be more than

one line through a given point parallel to a given line not containing that point. For such

geometries the sum of the interior angles of a triangle is then always greater than 180° or

always less than 180°.  This in turn is reflected in the area of a triangle which turns out to

be proportional to the difference between 180° and the sum of the interior angles.

First we need to specify what we mean by a geometry. This is the idea of an Abstract

Geometry introduced in Section 3.1 along with several very important examples based on

the notion of projective geometries, which first arose in Renaissance art in attempts to

represent three-dimensional scenes on a two-dimensional canvas. Both Euclidean and

hyperbolic geometry can be realized in this way, as later sections will show.

3.1 ABSTRACT AND LINE GEOMETRIES.  One of the weaknesses of Euclid’s

development of plane geometry was his ‘definition’ of points and lines. He defined a point

as “... that which has no part” and a line as “... breadthless length”.  These really don’t

make much sense, yet for over 2,000 years everything he built on these definitions has

been regarded as one of the great achievements in mathematical and intellectual history!

Because Euclid’s definitions are not very satisfactory in this regard, more modern

developments of geometry regard points and lines as undefined terms. A model of a

modern geometry then consists of specifications of points and lines.

3.1.1 Definition.  An Abstract Geometry G consists of a pair {P, L} where P is a set

and L is a collection of subsets of P.  The elements of P are called Points and the elements

of L are called Lines.   We will assume that certain statements regarding these points and
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lines are true at the outset.  Statements like these which are assumed true for a geometry are

called Axioms of the geometry.   Two Axioms we require are that each pair of points P, Q

in P belongs to at least one line l in L, and that each line l in L contains at least two

elements of P.

We can impose further geometric structure by adding other axioms to this definition as

the following example of a finite geometry - finite because it contains only finitely many

points - illustrates.  (Here we have added a third axiom and slightly modified the two

mentioned above.)

3.1.2 Definition. A 4-POINT geometry is an abstract geometry G = { P, L} in which

the following axioms are assumed true:

•  Axiom 1: P contains exactly four points;

•  Axiom 2:  each pair of distinct points in P belongs to exactly one line;

•  Axiom 3:  each line in L contains exactly two distinct points.

The definition doesn’t indicate what objects points and lines are in a 4-Point geometry,

it simply imposes restrictions on them. Only by considering a model of a 4-Point geometry

can we get an explicit description. Look at a tetrahedron.

It has 4 vertices and 6 edges. Each pair of vertices lies on

exactly one edge, and each edge contains exactly 2

vertices. Thus we get the following result.

3.1.3 Example. A tetrahedron contains a model of a 4-

Point geometry in which

P  = {vertices of the tetrahedron} and L = {edges of the tetrahedron}.

This example is consistent with our usual thinking of what a point in a geometry should

be and what a line should be. But points and lines in a 4-Point geometry can be anything so

long as they satisfy all the axioms.  Exercise 3.3.2 provides a very different model of a 4-
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Point geometry in which the points are opposite faces of an octahedron and the lines are the

vertices of the octahedron!

Why do we bother with models? Well, they give us something concrete to look at or

think about when we try to prove theorems about a geometry.

3.1.4 Theorem. In a 4-Point geometry there are exactly 6 lines.

To prove this theorem synthetically all we can do is use the axioms and argue logically

from those. A model helps us determine what the steps in the proof should be. Consider

the tetrahedron model of a 4-Point geometry. It has 6 edges, and the edges are the lines in

the geometry, so the theorem is correct for this model. But there might be a different model

of a 4-Point geometry in which there are more than 6 lines, or fewer than 6 lines. We have

to show that there will be exactly 6 lines whatever the model might be. Let’s use the

tetrahedron model again to see how to prove this.

•  Label the vertices A, B, C, and D. These are the 4 points in the geometry.

•  Concentrate first on A. There are 3 edges passing through A, one containing B, one

containing C, and one containing D; these are obviously distinct edges. This exhibits 3

distinct lines containing A.

•  Now concentrate on vertex B. Again there are 3 distinct edges passing through B, but

we have already counted the one passing also through A. So there are only 2 new lines

containing B.

•  Now concentrate on vertex C. Only the edge passing through C and D has not been

counted already, so there is only one new line containing C.

•  Finally concentrate on D. Every edge through D has been counted already, so there are

no new lines containing D.

Since we have looked at all 4 points, there are a total of 6 lines in all. This proof applies

to any 4-Point geometry if we label the four points A, B, C, and D, whatever those points

are. Axiom 2  says there must be one line containing A and B, one containing A and C and

one containing A and D. But the Axiom 3 says that the line containing A and B must be

distinct from the line containing A and C, as well as the line containing A and D. Thus there

will always be 3 distinct lines containing A. By the same argument, there will be 3 distinct

lines containing B, but one of these will contain A, so there are only 2 new lines containing
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B. Similarly, there will be 1 new line containing C and no new lines containing D. Hence

in any 4-Point geometry there will be exactly 6 lines.

This is usually how we prove theorems in Axiomatic Geometry: look at a model, check

that the theorem is true for the model, then use the axioms and theorems that follow from

these axioms to give a logically reasoned proof.  For Euclidean plane geometry that model

is always the familiar geometry of the plane with the familiar notion of point and line. But it

is not be the only model of Euclidean plane geometry we could consider! To illustrate the

variety of forms that geometries can take consider the following example.

3.1.5 Example. Denote by P2 the geometry in which the ‘points’  (here called P-points)

consist of all  the Euclidean lines through the origin in 3-space and the P-lines consist of all

Euclidean planes through the origin in 3-space.

Since exactly one plane can contain two given lines through the origin, there exists

exactly one P-line through each pair of  P-points in P2 just as in Euclidean plane geometry.

But what about parallel P-lines? For an abstract geometry G we shall say that two lines m,

and l in G are parallel when l and m contain no common points. This makes good sense

and is consistent with our usual idea of what parallel means. Since any two planes through

the origin in 3-space must always intersect in a line in 3-space we obtain the following

result.

3.1.6 Theorem.  In P2 there are no parallel P-lines.

Actually, P2 is a model of Projective plane geometry.  The following figure illustrates

some of the basic ideas about P2.
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BA

The two Euclidean lines passing through A and the origin and  through B and the origin

specify two P-points in P2, while the indicated portion of the plane containing these lines

through A and B specify the ‘P-line segment’ AB.

Because of Theorem 3.1.6, the geometry P2 cannot be a model for Euclidean plane

geometry, but it comes very ‘close’. Fix a plane passing through the origin in 3-space and

call it the Equatorial Plane by analogy with the plane through the equator on the earth.

3.1.7 Example. Denote by E2 the geometry in which the E-points consist of all lines

through the origin in 3-space that are not contained in the equatorial plane and the E-lines

consist of all planes through the origin save for the equatorial plane. In other words, E2 is

what is left of P2 after one P-line and all the P-points on that P-line in P2 are removed.

The claim is that E2 can be identified with the Euclidean plane. Thus there must be

parallel E-lines in this new geometry E2. Do you see why? Furthermore, E2  satisfies

Euclid’s Fifth Postulate.

 The figure below indicates how E2 can be identified with the Euclidean plane. Look at a

fixed sphere in Euclidean 3-Space centered at the origin whose equator is the circle of

intersection with the fixed equatorial plane. Now look at the plane which is tangent to this

sphere at the North Pole of this sphere.
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Every line through the origin in 3-space will intersect this tangent plane in exactly one point

unless the line is parallel in the usual 3-dimensional Euclidean sense to the tangent plane at

the North Pole. But these parallel lines are precisely the lines through the origin that lie in

the equatorial plane. On the other hand, for each point A in the tangent plane at the North

Pole there is exactly one line in 3-space passing through both the origin and the given point

A in the tangent plane.  Thus there is a 1-1 correspondence between the E-points in E2 and

the points in the tangent plane at the North Pole. In the same way we see that there is a 1-1

correspondence between E-lines in E2 and the usual Euclidean lines in the tangent plane.

The figure above illustrates the 1-1 correspondence between E-line segment AB in E2 and

the line segment AB in Euclidean plane geometry.

     For reasons, which will become very important later in connection with

transformations, this 1-1 correspondence can be made explicit through the use of

coordinate geometry and ideas from linear algebra. Let the fixed sphere centered at the

origin having radius 1. Then the point (x, y) in the Euclidean plane is identified with the

point (x, y, 1) in the tangent plane at the North Pole, and this point is then identified with

the line {α (x, y, 1): −∞ < < ∞α } through the origin in 3-space.

Since there are no parallel lines in P2 it is clear that the removal from P2 of that one P-

line and all P-points on that P-line must be very significant.

3.1.8 Exercise. What points do we need to add to the Euclidean plane so that under the

identification of the Euclidean plane with E2 the Euclidean plane together with these
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additional points are in 1-1 correspondence with the points in P2? What line do we need to

add to the Euclidean plane so that we get a 1-1 correspondence with all the lines in P2?

 Note first that by restricting further the points and lines in P2 we get a model of a

different geometry.  The set of all lines passing through the origin in 3-space and through

the 45th parallel in the Northern Hemisphere of the fixed sphere model determines a cone in

3-space to be denoted by L .

BA

3.1.9 Definition. Denote by H2 the geometry whose h-points consists of Euclidean

lines through the origin in 3-space that lie in the inside the cone L  and whose h-lines

consist of the intersections of the interior  of L and planes through the origin in 3-space.

Again the Euclidean lines through A and B represent h-points  A and B in H2 and the

‘h-line segment’ AB is (as indicated in the above figure by the shaded region) the sector of

a plane containing the Euclidean lines  through the origin  which are passing through

points on the line segment connecting A and B.  H2 is a model of Hyperbolic plane

geometry. The reason why it's a model of a 'plane' geometry is clear because we have only

defined points and lines, but what is not at all obvious is why the name 'hyperbolic' is

used. To understand that let's try to use H2 to create other models. For instance, our

intuition about 'plane' geometries suggests that we should try to find models in which h-
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points really are points, not lines through the origin! One way of doing this is by looking at

surfaces in 3-space, which intersect the lines inside the cone L exactly once. There are two

natural candidates, both presented here.  The second one presented realizes  Hyperbolic

plane geometry as the points on a hyperboloid, - hence the name 'Hyperbolic' geometry.

The first one presented realizes Hyperbolic plane geometry as the points inside a disk. This

first one, known as the Klein Model, is very useful for solving the following exercise

because its h-lines are realized as open Euclidean line segments. In the next section we

study a third model known as the Poincaré Disk.

3.1.10 Exercise. Given an h-line l in Hyperbolic plane geometry and an h-point P not

on the h-line, how many h-lines parallel to l through P are there?

3.1.11 Klein Model.  Consider the tangent plane M, tangent to the unit sphere at its

North Pole, and let the origin in M be the point of tangency of M with the North Pole. Then

M intersects the cone L in a circle, call it Σ, and it intersects each line inside L in exactly

one point inside Σ. In fact, there is a 1-1 correspondence between the lines inside L and the

points inside Σ. On the other hand, the intersection of M with planes is a Euclidean line, so

the lines in H2 are in 1-1 correspondence with the chords of Σ, except that we must

remember that points on circle Σ correspond to lines on L .   So the lines in the Klein model

of Hyperbolic plane geometry are exactly the chords of Σ, omitting the endpoints of a

chord.  In other words, the hyperbolic h-lines in this model are open line segments. The

following picture contains some points and lines in the Klein model,

B

A

D

C

ΣΣΣΣ
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the dotted line on the circumference indicating that these points are omitted.

3.1.11a Exercise.  Solve Exercise 3.1.10 using the Klein model.

3.1.12 Hyperboloid model. Consider the hyperbola 122 =− xz  in the x,z-plane. Its

asymptotes are the lines z x= ± . Now rotate the hyperbola and its asymptotes about the z-

axis. The asymptotes generate the cone L , and the hyperbola generates a two-sheeted

hyperboloid lying inside L ; denote the upper hyperboloid by B. Then every line through

the origin in 3-space intersects B exactly once – see Exercise 3.1.13; in fact, there is a

1-1 correspondence between the points on B and the points in H2. The lines in H2

correspond to the curves on B obtained by intersecting the planes though the origin in 3-

space. With this model, the hyperboloid B is a realization of Hyperbolic plane geometry.

3.1.13 Exercise.  Prove that every line through the origin in 3-space intersects B  (in

the Hyperbolic model above) exactly once.

3.2 POINCARÉ DISK. Although the line geometries of the previous section provide a

very convenient, coherent, and illuminating way of introducing models of non-Euclidean

geometries, they are not convenient ones in which to use Sketchpad.  More to the point,

they are not easy to visualize or to work with.  The Klein and Hyperboloid models are

more satisfactory ones that conform more closely to our intuition of what a ‘plane

geometry’ should be, but the definition of distance between points and that of angle

measure conform less so.  We instead focus on the Poincaré Model D, introduced by Henri

Poincaré in 1882, where ‘h-points’ are points as we usually think of them - points in the

plane - while ‘h-lines’ are arcs of  particular Euclidean circles. This too fits in with our

usual experience of Euclidean plane geometry if one thinks of a straight line through point

A as the limiting case of a circle through point A whose radius approaches ∞  as the center

moves out along a perpendicular line through A.  The Poincaré Disk Model allows the use

of standard Euclidean geometric ideas in the development of the geometric properties of the

models and hence of Hyperbolic plane geometry.  We will see later that D is actually a

model of the "same" geometry as H2 by constructing a 1-1 transformation from H2 onto D.

 Let C be a circle in the Euclidean plane. Then D is the geometry in which the ‘h-points’

are the points inside C and the ‘h-lines’ are the arcs inside C of any circle intersecting C at

right angles.  This means that we omit the points of intersection of these circles with C.  In

addition, any diameter of the bounding circle will also be an h-line, since any straight line
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through the center of the bounding circle intersects the bounding circle at right angles and

(as before) can be regarded as the limiting case of a circle whose radius approaches infinity.

As in the Klein model, points on the circle are omitted and hyperbolic h-lines are open -

-- in this case, open arcs of circles.  As we are referring to points inside C as h-points and

the hyperbolic lines inside C as h-lines; it will also be convenient to call C the bounding

circle. The following figure illustrates these definitions:

C

h-line

h-segment
h-ray

B

A

E

F
G

A,B,E,F, and G are 
h-points.

More technically, we say that a circle intersecting C at right angles is orthogonal to C. Just

as for Euclidean geometry, it can be shown that through each pair of h-points there passes

exactly one h-line.  A coordinate geometry proof of this fact is included in Exercise 3.6.2.

We suggest a synthetic proof of this in Section 3.5.  Thus the notion of h-line segment

between h-points A and B makes good sense: it is the portion between A and B of the

unique h-line through A and B.   In view of the definition of h-lines, the h-line segment

between A and B can also be described as the arc between A and B of the unique circle

through A and B that is orthogonal to C.  Similarly, an h-ray starting at an h-point A in D

is either one of the two portions, between A and the bounding circle, of an h-line passing

through A.

Having defined D, the first two things to do are to introduce the distance, dh (A, B),

between h-points A and B as well as the angle measure of an angle between h-rays starting

at some h-point A.  The distance function should have the same properties as the usual

Euclidean distance, namely:

•  (Positive-definiteness): For all points A and B ( A B≠ ),

dh(A, B) > 0   and    dh(A, A) = 0;

•  (Symmetry): For all points A and B,
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dh(A, B) = dh(B, A);

•  (Triangle inequality): For all points A, B and C,

dh(A, B) ≤ dh(A,C) + dh(C, B).

Furthermore the distance function should satisfy the Ruler Postulate.

3.2.0. Ruler Postulate:  The points in each line can be placed in 1-1 correspondence to

the real numbers in such a way that:

•  each point on the line has been assigned a unique real number (its coordinate);

•  each real number is assigned to a unique point on the line;

•  for each pair of points A, B on the line, dh(A, B) = |a - b|, where a and b are the

respective coordinates of A and B.

The function we adopt for the distance looks very arbitrary and bizarre at first, but good

sense will be made of it later, both from a geometric and transformational point of view.

Consider two h-points A, B in D and let M, N be the points of intersection with the

bounding circle of the h-line through A, B as in the figure:

C

B

A

M

N

We set

d A B
d A M d B N

d A N d B Mh , ln
( , ) ( , )
( , ) ( , )

( ) = 
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where d A M,( )  is the usual Euclidean distance between points A and M.  Using properties

of logarithms, one can check that the role of M and N can be reversed in the above formula

(see Exercise 3.3.7).

3.2.1 Exercise. Show that dh(A, B) satisfies the positive-definiteness and symmetry

conditions above.

We now introduce angles and angle measure in D.  Just as in the Euclidean plane, two

h-rays starting at the same point form an angle. In the figure below we see two intersecting

h-lines forming ∠ BAC.

θ

C

B

A

To find the hyperbolic measure mh∠ BAC  of ∠ BACwe appeal to angle measure in

Euclidean geometry. To do that we need the tangents to the arcs at the point A.  The

hyperbolic measure of the angle ∠ BAC is then defined to be the Euclidean measure of the

Euclidean angle between these two tangents, i.e. mh∠ BAC = m∠ θ .

Just as the notions of  points, lines, distance and angle measure are defined in

Euclidean plane geometry, these notions are all defined in D.  And, we can exploit the

hyperbolic tools for Sketchpad, which correspond to the standard Euclidean tools, to

discover facts and theorems about the Poincaré Disk and hyperbolic plane geometry in

general.

•  Load the “Poincaré” folder of scripts by moving the sketch “Poincare Disk.gsp” into

the Tool Folder.  To access this sketch, first open the folder “Samples”, then

“Sketches”, then “Investigations”. Once Sketchpad has been restarted, the following

scripts will be available:
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•  Hyperbolic Segment - Given two points, constructs the h-segment joining

them

•  Hyperbolic Line  - Constructs an h-line through two h-points

•  Hyperbolic P. Bisector - Constructs the perpendicular bisector between

two h-points

•  Hyperbolic Perpendicular - Constructs the perpendicular of an h-line

through a third point not on the h-line.

•  Hyperbolic A. Bisector – Constructs an h-angle bisector.

•  Hyperbolic Circle By CP - Constructs an h-circle by center and point.

•  Hyperbolic Circle By CR – Constructs an h-circle by center and radius.

•  Hyperbolic Angle – Gives the hyperbolic angle measure of an h-angle.

•  Hyperbolic Distance - Gives the measure of the hyperbolic distance

between two h-points which do not both lie on a diameter of the Poincare disk.

•  The sketch “Poincare Disk.gsp” contains a circle with a specially labeled center called,

‘P. Disk Center’, and point on the disk called, ‘P. Disk Radius’.  The tools listed above

work by using Auto-Matching to these two labels, so if you use these tools in another

sketch, you must either label the center and radius of your Poincare Disk accordingly,

or match the disk center and radius before matching the other givens for the tool.  We

are now ready to investigate properties of the Poincaré Disk. Use the line tool to

investigate how the curvature of h-lines changes as the line moves from one passing

close to the center of the Poincaré disk to one lying close to the bounding circle. Notice

that this line tool never produces h-lines passing through the center of the bounding

circle for reasons that will be brought out in the next section. In fact, if you experiment

with the tools, you will find that the center of the Poincare Disk and the h-lines which

pass through the center are problematic in general.  Special tools need to be created to

deal with these cases.

(There is another very good software simulation of the Poincaré disk available on the web

at

http://math.rice.edu/~joel/NonEuclid.
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You can download the program or run it online. The site also contains some background

material that you may find interesting.)

3.2.2 Demonstration: Parallel Lines. As in Euclidean geometry, two h-lines in D

are said to be parallel when they have no h-points in common.

•  In the Poincaré disk construct an h-line l and an h-point P not on l. Use the h-line script

to investigate if an h-line through P parallel to l can be drawn. Can more than one be

drawn? How many can be drawn?   End of Demonstration 3.2.2.

3.2.3 Shortest Distance.  In Euclidean plane geometry the line segment joining points

P and Q is the path of shortest distance; in other words, a line segment can be described

both in metric terms and in geometric terms. More precisely, there are two natural

definitions of a line segment PQ, one as the shortest path between P and Q, a metric

property, the other as all points between P, Q on the unique line l passing through P and Q

- a geometric property. But what do we mean by between? That is easy to answer in terms

of the metric: the line segment PQ consists of all points R on l such that dh(P, R) + dh(R,

Q) = dh(P, Q). This last definition makes good sense also in D since there we have defined

a notion of distance.

3.2.3a Demonstration: Shortest Distance.

•  In the Poincaré disk select two points A and B.  Use the “Hyperbolic Distance” tool to

investigate which points C minimize the sum

dh(C, A) + dh(C, B).

What does your answer say about an h-line segment between A and B?

End of Demonstration 3.2.3a.

3.2.4 Demonstration: Hyperbolic Versus Euclidean Distance. Since Sketchpad

can measure both Euclidean and hyperbolic distances we can investigate hyperbolic

distance and compare it with Euclidean distance.

•  Draw two h-line segments, one near the center of the Poincaré disk, the other near the

boundary. Adjust the segments until both have the same hyperbolic length. What do

you notice about the Euclidean lengths of these arcs?

•  Compute the ratio
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d A B
d A B

h( , )
( , )

of the hyperbolic and Euclidean lengths of the respective hyperbolic and Euclidean line

segments between points A, B in the Poincaré disk. What is the largest value you can

obtain?   End of Demonstration 3.2.4.

3.2.5 Demonstration: Investigating dh further.

•  Does this definition of dh depend on where the boundary circle lies in the plane?

•  What is the effect on dh if we change the center of the circle?

•  What is the effect on dh of doubling the radius of the circle?

By changing the size of the disk, but keeping the points in the same proportion we can

answer these questions.  Draw an h-line segment AB  and measure its length.

   Over on the toolbar change the select arrow to the Dilate tool. Select “P. Disk

Center”, then Transform  “Mark Center.” Under the Edit  menu “Select All,” then deselect

the “Distance =”.  Now, without deselecting these objects, drag the P. Disk Radius to vary

the size of the P-Disk and of all the Euclidean distances between objects inside

proportionally. What effect does changing the size of the P-Disk proportionally (relative to

the P-Disk Center) have on the hyperbolic distance between the two endpoints of the

hyperbolic segment?

   Over on the toolbar change the select arrow to the Rotate tool.  Select “P-Disk

Center”, then Transform  “Mark Center.” Under the Edit  menu “Select All,” then deselect

the “Distance =”.   Now, without deselecting these objects, drag the P-Disk Radius to

rotate the orientation of the P-Disk. What effect does changing the orientation of the P-Disk

uniformly have on the hyperbolic distance between the two endpoints of the hyperbolic

segment?

Over on the toolbar, change the Rotate tool back to the select arrow. Under the Edit

menu “Select All,” then deselect the “Distance =”.  Grab the P-Disk Center, and drag the

Disk around the screen. What effect does changing the location of the P-Disk have on the

hyperbolic distance between the two endpoints of the h-line segment?

 End of Demonstration 3.2.5.

3.3 Exercises.  This Exercise set contains questions related to Abstract Geometries and

properties of the Poincaré Disk.
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Exercise 3.3.1. Prove that in a 4-Point geometry there passes exactly 3 lines through

each point.

Exercise 3.3.2. The figure to the right is an

octahedron. Use this to exhibit a model of a 4-Point

geometry that is very different from the tetrahedron

model we used in class. Four of the faces have been

picked out. Use these as the 4 points. What must the

lines be if the octahedron is to be a model of a 4-

Point geometry? Make sure you check that all the

axioms of a 4-Point geometry are satisfied.

Exercise 3.3.3. We have stated that our definition for the hyperbolic distance between

two points satisfies the ruler postulate, but it is not easy to construct very long h-line

segments, say ones of length 10. The source of this difficulty is the rapid growth of the

exponential function. Suppose that the radius of the bounding circle is 1 and let A be an h-

point that has Euclidean distance r from the origin (r  < 1, of course). The diameter of the

bounding circle passing through A is an h-line.   Show the hyperbolic distance from the

center of the bounding circle to A is

ln
( )
( )
1
1

+
−

r

r
;

Find r when the hyperbolic distance from A to the center of the bounding circle is 10.

Exercise 3.3.4.  Use Exercise 3.3.3 to prove that the second statement of the ruler

postulate holds when the hyperbolic line is a diameter of the bounding circle and if to each

point we assign the hyperbolic distance between it and the center of the bounding circle.

That is, why are we guaranteed that each real number is assigned to a unique point on the

line? Hint: Show your function for r from Exercise 3.3.3 is 1-1 and onto the interval (-

1,1).

Exercise 3.3.5. Explain why the ruler postulate disallows the use of the Euclidean

distance formula to compute the distance between two points in the Poincaré Disk.

Exercise 3.3.6. Using Sketchpad open the Poincaré Disk Starter and find a

counterexample within the Poincaré Disk to each of the following.
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(a) If a line intersects one of two parallel lines, then it intersects the other.

(b) If two lines are parallel to a third line then the two lines are parallel to each other.

Exercise 3.3.7.   Using properties of logarithms and properties of absolute value, show

that, with the definition of hyperbolic distance,

d A B
d A M d B N

d A N d B Mh , ln
( , ) ( , )
( , ) ( , )

( ) = 





 = ln
( , ) ( , )
( , ) ( , )

d A N d B M

d A M d B N






 ,

i.e., the roles of M and N can be reversed and the same distance value results.

3.4 CLASSIFYING THEOREMS.  For many years mathematicians attempted to

deduce Euclid's fifth postulate from the first four postulates and five common notions.

Progress came in the nineteenth century when mathematicians abandoned the effort to find

a contradiction in the denial of the fifth postulate and instead worked out carefully and

completely the consequences of such a denial. It was found that a coherent theory arises if

one assumes the Hyperbolic Parallel Postulate instead of Euclid's fifth Postulate.

Hyperbolic Parallel Postulate: Through a point P not on a given line l there exists

at least two lines parallel to l.

The axioms for hyperbolic plane geometry are Euclid’s 5 common notions, the first

four postulates and the Hyperbolic Parallel Postulate. Three professional mathematicians

are credited with the discovery of Hyperbolic geometry.  They were Carl Friedrich Gauss

(1777-1855), Nikolai Ivanovich Lobachevskii (1793-1856) and Johann Bolyai (1802-

1860).  All three developed non-Euclidean geometry axiomatically or on a synthetic basis.

They had neither an analytic understanding nor an analytic model of non-Euclidean

geometry.  Fortunately, we have a model now; the Poincaré disk D is a model of

hyperbolic plane geometry, meaning that the five axioms, consisting of Euclid’s first four

postulates and the Hyperbolic Parallel Postulate, are true statements about D, and so any

theorem that we deduce from these axioms must hold true for D.    In particular, there are

several lines though a given point parallel to a given line not containing that point.

Now, an abstract geometry (in fact, any axiomatic system) is said to be categorical if

any two models of the system are equivalent.  When a geometry is categorical, any

statement which is true about one model of the geometry is true about all models of the

geometry and will be true about the abstract geometry itself.   Euclidean geometry and the

geometries that result from replacing Euclid’s fifth postulate with Alternative A or

Alternative B are both categorical geometries.
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  In particular, Hyperbolic plane geometry is categorical and the Poincaré disk D is a

model of hyperbolic plane geometry.  So any theorem valid in D must be true of

Hyperbolic plane geometry.  To prove theorems about Hyperbolic plane geometry one can

either deduce them from the axioms (i.e., give a synthetic proof) or prove them from the

model D (i.e., give an analytic proof).

Since both the model D and Hyperbolic plane geometry satisfy Euclid’s first four

postulates, any theorems for Euclidean plane geometry that do not require the fifth postulate

will also be true for hyperbolic geometry.  For example, we noted in Section 1.5 that the

proof that the angle bisectors of a triangle are concurrent is independent of the fifth

postulate.   By comparison, any theorem in Euclidean plane geometry whose proof used

the Euclidean fifth postulate might not be valid in hyperbolic geometry, though it is not

automatically ruled out, as there may be a proof that does not use the fifth postulate.  For

example, the proof we gave of the existence of the centroid used the fifth postulate, but

other proofs, independent of the fifth postulate, do exist.  On the other hand, all proofs of

the existence of the circumcenter must rely in some way on the fifth postulate, as this result

is false in hyperbolic geometry.

Exercise 3.4.0  After the proof of Theorem 1.5.5, which proves the existence of the

circumcenter of a triangle in Euclidean geometry, you were asked to find where the fifth

postulate was used in the proof.  To answer this question, open a sketch containing a

Poincare Disk with the center and radius appropriately labeled (P. Disk Center and P. Disk

Radius).  Draw a hyperbolic triangle and construct the perpendicular bisectors of two of the

sides.  Drag the vertices of the triangle and see what happens.  Do the perpendicular

bisectors always intersect?  Now review the proof of Theorem 1.5.5 and identify where the

Parallel postulate was needed.

We could spend a whole semester developing hyperbolic geometry axiomatically!  Our

approach in this chapter is going to be either analytic or visual, however, and in chapter 5

we will begin to develop some transformation techniques once the idea of Inversion has

been adequately studied. For the remainder of this section, therefore, various objects in the

Poincaré disk D will be studied and compared to their Euclidean counterparts.

3.4.1  Demonstration: Circles. A circle is the set of points equidistant from a given

point (the center).

•  Open a Poincaré Disk, construct two points, and label them by  A and O.
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•  Measure the hyperbolic distance between A and O, dh(A, O),   Select the point A and

under the Display menu select Trace Points.  Now drag A while keeping dh(A, O)

constant.

•  Can you describe what a hyperbolic circle in the Poincaré Disk should look like?

•  To confirm your results, use the circle script to investigate hyperbolic circles in the

Poincaré Disk.  What do you notice about the center?  End of Demonstration

3 . 4 . 1 .

3.4.2 Demonstration: Triangles.  A triangle is a three-sided polygon; two hyperbolic

triangles are said to be congruent when they have congruent sides and congruent interior

angles. Investigate hyperbolic triangles in the Poincaré Disk.

•  Construct a hyperbolic triangle ∆ABC and use the “Hyperbolic Angle” tool to measure

the hyperbolic angles of ∆ABC (keep in mind that three points are necessary to name

the angle, the vertex should be the second point clicked).

•  Calculate the sum of the three angle measures. Drag the vertices of the triangle around.

What is a lower bound for the sum of the hyperbolic angles of a triangle? What is an

upper bound for the sum of the hyperbolic angles of a triangle? What is an appropriate

conclusion about hyperbolic triangles? How does the sum of the angles change as the

triangle is dragged around D?

The proofs of SSS, SAS, ASA, and HL as valid shortcuts for showing congruent

triangles did not require the use of Euclid’s Fifth postulate.  Thus they are all valid

shortcuts for showing triangles are congruent in hyperbolic plane geometry.  Use SSS to

produce two congruent hyperbolic triangles in D.   Drag one triangle near the boundary

and one triangle near the center of D.  What happens?

We also had AA, SSS, and SAS shortcuts for similarity in Euclidean plane geometry.

Is it possible to find two hyperbolic triangles that are similar but not congruent?  Your

answer should convince you that it is impossible to magnify or shrink a triangle without

distortion!  End of Demonstration 3.4.2.

3.4.3 Demonstration: Special Triangles. An equilateral triangle is a triangle with 3

sides of equal length. An isosceles triangle has two sides of equal length.
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•  Create a tool that constructs hyperbolic equilateral triangles in the Poincaré disk.  Is an

equilateral triangle equiangular?  Are the angles always 60° as in Euclidean plane

geometry?

•  Can you construct a hyperbolic isosceles triangle? Are angles opposite the congruent

sides congruent? Does the ray bisecting the angle included by the congruent sides bisect

the side opposite? Is it also perpendicular?  How do your results compare to Theorem

1.4.6 and Corollary 1.4.7?  End of Demonstration 3.4.3.

3.4.4 Demonstration: Polygons.

•  A rectangle is a quadrilateral with four right angles.  Is it possible to construct a

rectangle in D?

•  A regular polygon has congruent sides and congruent interior angles.

•  To construct a regular quadrilateral in the Poincaré Disk start by constructing an h-circle

and any diameter of the circle. Label the intersection points of the diameter and the

circle as A and C.  Next construct the perpendicular bisector of the diameter and label

the intersection points with the circle as B and D.  Construct the line segments AB,

BC,  CD,  and DA, .

                       

D

BA

C

ABCD is a regular quadrilateral.

Then ABCD is a regular quadrilateral.  Why does this work?  Create a tool from your

sketch.

•  The following theorems are true for hyperbolic plane geometry as well as Euclidean

plane geometry: Any regular polygon can be inscribed in a circle. Any regular polygon

can be circumscribed about a circle. Consequently, any regular n-gon can be divided

into n congruent isosceles triangles just as in Euclidean plane geometry.
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•  Modify the construction to produce a regular octagon and regular 12-gon.  Create tools

from your sketches.

End of Demonstration 3.4.4.

By now you may have started to wonder how one could define area within hyperbolic

geometry.  In Euclidean plane geometry there are two natural ways of doing this, one

geometric, the other analytic. In the geometric definition we begin with the area of a fixed

shape, a square, and then build up the area of more complicated figures as sums of squares

so that we could say that the area of a figure is n square inches, say. Since squares don’t

exist in hyperbolic plane geometry, however, we cannot proceed in this way.

Now any definition of area should have the following properties:

•  Every polygonal region has one and only one area, (a positive real number).

•  Congruent triangles have equal area.

•  If a polygonal region is partitioned into a pair of sub regions, the area of the region will

equal the sum of the areas of the two sub regions.

Recall, that in hyperbolic geometry we found that the sum of the measures of the angles of

any triangle is less than 180. Thus we will define the defect of a triangle as the amount by

which the angle sum of a triangle misses the value 180.

3.4.5 Definition.  The defect of triangle ∆ ABC  is the number

δ( )∆ABC m A m B m C= − ∠ − ∠ − ∠180

More generally, the defect can be defined for polygons.

3.4.6 Definition.  The defect of polygon  PP Pn1 2K  is the number

nn PmPmPmnPPP ∠−−∠−∠−−=∆ KK 2121 )2(180)(δ

It may perhaps be surprising, but this will allow us to define a perfectly legitimate area

function where the area of a polygon PP Pn1 2K is k times its defect. The value of k can be

specified once a unit for angle measure is agreed upon.  For example if our unit of angular

measurement is degrees, and we wish to express angles in terms of radians then we use the

constant  k =  π 180o .  It can be shown that this area function defined below will satisfy all

of the desired properties listed above.

3.4.7 Definition.  The area   Area PP Ph( )1 2K  of a polygon  PP Pn1 2K  is defined by
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  Area PP P k PP Ph n n( ) ( )1 2 1 2K K= δ
where k is a positive constant.

Note, that this puts an upper bound on the area of all triangles, namely 180⋅ k.  (More

generally, 180 2⋅ − ⋅( )n kfor n-gons.)  This definition becomes even stranger when we

look at particular examples.

3.4.7a Demonstration: Areas of Triangles.

•  Open a Poincare disk. Construct a hyperbolic 'triangle' ∆hOMN having one vertex O at

the origin and the remaining two vertices M, N on the bounding circle. This is not a

triangle in the strict sense because points on the bounding circle are not points in the

Poincare disk. Nonetheless, it is the limit of a hyperbolic triangle ∆hOAB as A, B

approach the bounding circle.

Disk

P-Disk Radius

O

N

M

A

B

The 'triangle' ∆hOMN is called a Doubly-Asymptotic triangle.

•  Determine the length of the hyperbolic line segment AB using the length script. Then

measure each of the interior angles of the triangle and compute the area of ∆hOAB (use
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k=1). What happens to these values as A, B approach M, N along the hyperbolic line

through A, B?  Set

Area OMN Area OABh h h h( ) lim ( )∆ ∆=

Explain this value by relating it to properties of ∆hOMN.

•  Repeat this construction, replacing the center O by any point C in the Poincaré disk.

Disk

P-Disk Radius

P-Disk Center

N

M

A

B

C

What value do you obtain for Area CABh h( )∆ ? Now let A, B approach M, N along the

hyperbolic line through A, B and set

Area CMN Area CABh h h h( ) lim ( )∆ ∆= ;

again we say that ∆h CMN( )  is a doubly-asymptotic triangle. Relate the value of

Area CMNh h( )∆  to properties of ∆hCMN.

•  Select an arbitrary point L on the bounding circle and let C approach L. We call

∆hLMN a triply-asymptotic triangle. Now set
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Area LMN Area CMNh h h h( ) lim ( )∆ ∆= .

Explain your value for Area LMNh h( )∆  in terms of the properties of ∆hLMN.

End of Demonstration 3.4.7a.

Your investigations may lead you to conjecture the following result.

3.4.8 Theorem.

(a) The area of a hyperbolic triangle is at most 180k even though the lengths of its sides

can be arbitrarily large.

(b) The area of a triply-asymptotic triangle is always 180k irrespective of the location of

its vertices on the bounding circle.

By contrast, in Euclidean geometry the area of a triangle can become unboundedly large

as the lengths of its sides become arbitrarily large. In fact, it can be shown that Euclid’s

Fifth Postulate is equivalent to the statement: there is no upper bound for the areas of

triangles.

3.4.9 Summary. The following results are true in both Euclidean and Hyperbolic

geometries:

•  SAS, ASA, SSS, HL congruence conditions for triangles.

•  Isosceles triangle theorem (Theorem 1.4.6 and Corollary 1.4.7)

•  Any regular polygon can be inscribed in a circle.

The following results are strictly Euclidean

•  Sum of the interior angles of a triangle is180°.

•  Rectangles exist.

The following results are strictly Hyperbolic

•  The sum of the interior angles of a triangle is less than 180°.

•  Parallel lines are not everywhere equidistant.

•  Any two similar triangles are congruent.
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Further entries to this list are discussed in Exercise set 3.6.

As calculus showed, there is also an analytic way introducing the area of a set A in the

Euclidean plane as a double integral

dxdy
A∫∫ .

An entirely analogous analytic definition can be made for the Poincaré disk. What is needed

is a substitute for dxdy. If we use standard polar coordinates r,θ( ) for the Poincaré disk,

then the hyperbolic area of a set A is defined by

Area A
rdrd

rh A
( ) =

−∫∫ 4
1 2

θ .

Of course, when A is an n-gon, it has to be shown that this integral definition of area

coincides with the value defined by the defect of A up to a fixed constant k independent of

A. Calculating areas with this integral formula often requires a high degree of algebraic

ingenuity, however.

3.5 ORTHOGONAL CIRCLES.  Orthogonal circles, i.e. circles intersecting at right

angles, arise on many different occasions in plane geometry including the Poincaré disk

model D of hyperbolic plane geometry introduced in the previous section. In fact, their

study constitutes a very important part of Euclidean plane geometry known as Inversion

Theory. This will be studied in some detail in Chapter 5, but here we shall develop enough

of the underlying ideas to be able to explain exactly how the tools constructing h-lines and

h-segments are obtained.

Note first that two circles intersect at right angles when the tangents to both circles at

their point of intersection are perpendicular. Another way of expressing this is say that the

tangent to one of the circles at their point of intersection D passes through the center of the

other circle as in the figure below.
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O

D

A

Does this suggest how orthogonal circles might be constructed?

3.5.1 Exercise. Given a circle C1 centered at O and a point D on this circle, construct a

circle C2 intersecting C1 orthogonally at D.   How many such circles C2 can be drawn?

 It should be easily seen that there are many possibilities for circle C2.  By requiring extra

properties of C2 there will be only one possible choice of C2. In this way we see how to

construct the unique h-line through two points P, Q in D.

3.5.2 Demonstration. Given a circle C1 centered at O, a point A not on C1 , as well as a

point D on C1, construct a circle C2 passing through A and intersecting C1 at D

orthogonally. How many such circles C2 can be drawn?

C1

A

D

O

Sketchpad provides a very illuminating solution to this problem.

•  Open a new sketch. Draw circle C1, labeling its center O, and construct point A not on

the circle as well as a point D on the circle.

•  Construct the tangent line to the circle C1 at D and then the segment AD.
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•  Construct the perpendicular bisector of AD. The intersection of this perpendicular

bisector with the tangent line to the circle at D will be the center of a circle passing

through both A and D and intersecting the circle C1  orthogonally at D. Why?

The figure below illustrates the construction when A is outside circle C1.

C1

C2

O

D

A

What turns out to be of critical importance is the locus of circle C2 passing through A and D

and intersecting the given circle C1 orthogonally at D, as D moves.  Use Sketchpad to

explore the locus.

•  Select the circle C2, and under the Display menu select trace circle. Drag D.

•  Alternatively you can select the circle C2, then select the point D and under the

Construct menu select locus.

The following figure was obtained by choosing different D on the circle C1 and using a

script to construct the circle through A (outside C1) and D orthogonal to C2.  The figure you

obtain should look similar to this one, but perhaps more cluttered if you have traced the

circle.
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C1

C2

A
O

DB

Your figure should suggest that all the circles orthogonal to the given circle C1 that pass

through A have a second common point on the line through O (the center of C1) and A.  In

the figure above this second common point is labeled by B. [Does the figure remind you of

anything in Physics - the lines of magnetic force in which the points A and B are the poles

of the magnet. say?]   Repeat the previous construction when A is inside C1 and you should

see the same result.

End of Demonstration 3.5.2.

At this moment, Theorem 2.9.2 and its converse 2.9.4 will come into play. 

3.5.3 Theorem. Fix a circle C1 with center O, a point A not on the circle, and point D on

the circle, Now let B be the point of intersection of the line through O with the circle

through A and D that is orthogonal to C1.  Then B satisfies

OA OB OD. = 2.

In particular, the point B is independent of the choice of point D.  The figure below

illustrates the theorem when A is outside C1.
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C1

A

O

D

B

OA = 1.65 inches

OD2 = 0.86 inches2

OB = 0.52 inches

OA OB = 0.86 inches2

Proof.  By construction the segment OD is tangential to the orthogonal circle. Hence

OA OB OD. = 2 by Theorem 2.9.2.                                                                              QED

Theorem 3.5.3 has an important converse.

3.5.4 Theorem.  Let C1 be a circle of radius r centered at O.  Let A and B be points on a

line through O (neither A or B on C1).  If  OA OB r. = 2 then any circle through A and B will

intersect the circle C1 orthogonally.

Proof.   Let D denote a point of intersection of the circle C1 with any circle passing

through A and B. Then OA OB OD. = 2. So by Theorem 2.9.4, the line segment OD will

be tangential to the circle passing through A, B, and D. Thus the circle centered at O will be

orthogonal to the circle passing through A, B, and D.                                  QED

Theorems 3.5.3 and 3.5.4 can be used to construct a circle orthogonal to a given circle

C1 and passing through two given points P, Q inside C1.  In other words, we can show

how to construct the unique h-line through two given points P, Q in the hyperbolic plane

D .

3.5.5 Demonstration.

•  Open a new sketch and draw the circle C1, labeling its center by O.  Now select

arbitrary points P and Q inside C1.

•  Choose any point D on C1.

•  Construct the circle C2 passing through P and D that is orthogonal to C1. Draw the ray

starting at O and passing through P.  Let B be the other point of intersection of this ray
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with C2. By Theorem 3.5.3 OP.OB = OD2. Confirm this by measuring OP, OB, and

OD in your figure.

•  Construct the circumcircle passing through the vertices P, Q and B of ∆PQB.  By

Theorem 3.3.4 this circumcircle will be orthogonal to the given circle.

C1

C2

Q

P

O

D

B

OD2 = 1.15 inches2

OP OB = 1.15 inches2

If P and Q lie on a diameter of C1 then the construction described above will fail. Why?

This explains why there had to be separate scripts in Sketchpad for constructing h-lines

passing through the center of the bounding circle of the Poincaré model D of hyperbolic

plane geometry.

The points A, B described in Theorem 3.5.3 are said to be Inverse Points. The

mapping taking A to B is said to be Inversion. The properties of inversion will be studied

in detail in Chapter 5 in connection with tilings of the Poincaré model D. Before then in

Chapter 4, we will study transformations.  End of Demonstration 3.5.5.

3.6 Exercises. In this set of exercises, we’ll look at orthogonal circles, as well as other

results about the Poincaré Disk.

Exercise 3.6.1. To link up with what we are doing in class on orthogonal circles, recall

first that the equation of a circle C in the Euclidean plane with radius r and center (h, k) is

(x - h)2 + (y - k)2 = r2

which on expanding becomes

x2  - 2hx + y2  - 2ky + h2 + k2 =  r2.

Now consider the special case when C has center at the origin (0, 0) and radius 1.  Show

that the equation of the circle orthogonal to C  and having center (h, k) is given by

x2 - 2hx + y2 -2ky + 1 = 0.
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Exercise 3.6.2.  One very important use of the previous problem occurs when C is the

bounding circle of the Poincaré disk. Let A = (a1, a2) and B = (b1, b2) be two points inside

the circle C, i.e., two h-points. Show that there is one and only one choice of (h, k) for

which the circle centered at (h, k) is orthogonal to C and passes through A, B. This gives a

coordinate geometry proof of the basic Incidence Property of hyperbolic geometry saying

that there is one and only one h-line through any given pair of points in the Poincaré Disk.

Assume that A and B do not lie on a diagonal of C.

Exercise 3.6.3.  Open a Poincaré Disk and construct a hyperbolic right triangle. (A right

triangle has one 90° angle.)  Show that the Pythagorean theorem does not hold for the

Poincaré disk D.  Where does the proof of Theorem 2.3.4 seem to go wrong?

Exercise 3.6.4. Open a Poincaré Disk.  Find a triangle in which the perpendicular

bisectors for the sides do not intersect.  In Hyperbolic plane geometry, can any triangle be

circumscribed by a circle?  Can any triangle be inscribed by a circle?  Why or why not?

Exercise 3.6.5. Find a counterexample in the Poincaré Disk model for each of the

following theorems. That is show each theorem is strictly Euclidean.

(a) The opposite sides of a parallelogram are congruent. (A parallelogram is a quadrilateral

where opposite sides are parallel.)

(b) The measure of an exterior angle of a triangle is equal to the sum of the measure of the

remote interior angles.

Exercise 3.6.6. Using Sketchpad open a Poincaré Disk. Construct a point P and any

diameter of the disk not through P.  Devise a script for producing the h-line through P

perpendicular to the given diameter (also an h-line).

Exercise 3.6.7. The defect of a certain regular hexagon in hyperbolic geometry is 12.

(k=1)

O
B

A
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•  Find the measure of each angle of the hexagon.

•  If O is the center of the hexagon, find the measure of each interior angle of each sub-

triangle making up the hexagon, such as ∆ABO as shown in the figure.

•  Are each of these sub-triangles equilateral triangles, as they would be if the geometry

were Euclidean?

Exercise 3.6.8. Given ∆ABC as shown with δ1and δ2as defects of the sub triangles

∆ABD and ∆ADC

δ1
δ2

A

B
C

D

prove δ δ δ( )∆ABC = +1 2.


