Chapter 3
NON-EUCLIDEAN GEOMETRIES

In the previous chapter we began by adding Euclid’s Fifth Postulate to his five common
notions and first four postulates. This produced the familiar geometry of the ‘Euclidean’
plane in which there exists precisely one line through a given point parallel to a given line
not containing that point. In particular, the sum of the interior angles of any triangle was

always 180 no matter the size or shape of the triangle. In this chapter we shall study

various geometries in which parallel lines need not exist, or where there might be more than
one line through a given point parallel to a given line not containing that point. For such

geometries the sum of the interior angles of a triangle is then always greater than 180
always less than 180 This in turn is reflected in the area of a triangle which turns out to

be proportional to the difference between°1&0d the sum of the interior angles.

First we need to specify what we mean by a geometry. This is the ideAlo$taact
Geometryintroduced in Section 3.1 along with several very important examples based on
the notion ofprojective geometriesyhich first arose in Renaissance art in attempts to
represent three-dimensional scenes on a two-dimensional canvas. Both Euclidean and
hyperbolic geometry can be realized in this way, as later sections will show.

3.1 ABSTRACT AND LINE GEOMETRIES. One of the weaknesses of Euclid’'s
development of plane geometry was his ‘definition’ of points and lines. He defined a point
as “... that which has no part” and a line as “... breadthless length”. These really don't
make much sense, yet for over 2,000 years everything he built on these definitions has
been regarded as one of the great achievements in mathematical and intellectual history!
Because Euclid’s definitions are not very satisfactory in this regard, more modern
developments of geometry regard points and lines as undefined temasiefof a

modern geometry then consists of specifications of points and lines.

3.1.1 Definition. An Abstract Geometr consists of a pair®, L} where P is a set
and/ is a collection of subsets 8f The elements dP are calledPointsand the elements

of L are called.ines. We will assume that certain statements regarding these points and



lines are true at the outset. Statements like these which are assumed true for a geometry are
calledAxiomsof the geometry Two Axioms we require are that each pair of potQ

in P belongs to at least one lihén £, and that each linkin £ contains at least two

elements ofP.

We can impose further geometric structure by adding other axioms to this definition as
the following example of éinite geometry - finite because it contains only finitely many
points - illustrates(Here we have added a third axiom and slightly modified the two
mentioned above.)

3.1.2 Definition. A 4-POINT geometry is an abstract geometdfy { P, L} in which
the following axioms are assumed true:

* Axiom 1: P contains exactly four points;
* Axiom 2: each pair of distinct points i belongs to exactly one line;

e Axiom 3: each line inL contains exactly two distinct points.

The definition doesn’t indicate what objects points and lines are in a 4-Point geometry,
it simply imposes restrictions on them. Only by considering a model of a 4-Point geometry
can we get an explicit description. Look at a tetrahedron.

It has 4 vertices and 6 edges. Each pair of vertices lies on
exactly one edge, and each edge contains exactly 2
vertices. Thus we get the following result.

3.1.3 Example A tetrahedron contains a model of a 4-
Point geometry in which

P ={vertices of the tetrahedron} anfd= {edges of the tetrahedron}.

This example is consistent with our usual thinking of what a point in a geometry should
be and what a line should be. But points and lines in a 4-Point geometry can be anything so
long as they satisfy all the axioms. Exercise 3.3.2 provides a very different model of a 4-



Point geometry in which the points are opposite faces of an octahedron and the lines are the
vertices of the octahedron!

Why do we bother with models? Well, they give us something concrete to look at or
think about when we try to prove theorems about a geometry.

3.1.4 Theorem.In a 4-Point geometry there are exactly 6 lines.

To prove this theorem synthetically all we can do is use the axioms and argue logically
from those. A model helps us determine what the steps in the proof should be. Consider
the tetrahedron model of a 4-Point geometry. It has 6 edges, and the edges are the lines in
the geometry, so the theorem is correct for this model. But there might be a different model
of a 4-Point geometry in which there are more than 6 lines, or fewer than 6 lines. We have
to show that there will be exactly 6 lines whatever the model might be. Let’s use the
tetrahedron model again to see how to prove this.

» Label the verticed, B, C, andD. These are the 4 points in the geometry.

» Concentrate first oA. There are 3 edges passing throAgbne containingg, one
containingC, and one containin®; these are obviously distinct edges. This exhibits 3
distinct lines containing.

* Now concentrate on vert& Again there are 3 distinct edges passing thrd)diut
we have already counted the one passing also thiaugh there are only 2 new lines
containingB.

* Now concentrate on vert€x Only the edge passing througlandD has not been
counted already, so there is only one new line contafding

* Finally concentrate ob. Every edge througb has been counted already, so there are
no new lines containinD.

Since we have looked at all 4 points, there are a total of 6 lines in all. This proof applies
to any 4-Point geometry if we label the four poiat8, C, andD, whatever those points
are. Axiom 2 says there must be one line contaifiagdB, one containind\ andC and
one containingh andD. But the Axiom 3 says that the line containkagndB must be
distinct from the line containing andC, as well as the line containidgandD. Thus there
will always be 3 distinct lines containidg By the same argument, there will be 3 distinct
lines containindd, but one of these will contal so there are only 2 new lines containing



B. Similarly, there will be 1 new line containi@and no new lines containifigy Hence
in any 4-Point geometry there will be exactly 6 lines.

This is usually how we prove theorems in Axiomatic Geometry: look at a model, check
that the theorem is true for the model, then use the axioms and theorems that follow from
these axioms to give a logically reasoned proof. For Euclidean plane geometry that model
is always the familiar geometry of the plane with the familiar notion of point and line. But it
is not be the only model of Euclidean plane geometry we could consider! To illustrate the
variety of forms that geometries can take consider the following example.

3.1.5 Example.Denote byP? the geometry in which the ‘points’ (here called P-points)
consist of all the Euclidean lines through the origin in 3-space and the P-lines consist of all
Euclidean planes through the origin in 3-space.

Since exactly one plane can contain two given lines through the origin, there exists
exactly one P-line through each pair of P-point&ijust as in Euclidean plane geometry.

But what about parallel P-lines? For an abstract georietre shall say that two lines,

andl in G areparallel whenl andm contain no common points. This makes good sense

and is consistent with our usual idea of what parallel means. Since any two planes through
the origin in 3-space must always intersect in a line in 3-space we obtain the following
result.

3.1.6 Theorem. In P? there are ngarallel P-lines.

Actually, P* is a model of Projective plane geometry. The following figure illustrates
some of the basic ideas ab&t



The two Euclidean lines passing throughand the origin and throudhand the origin
specify two P-points i??, while the indicated portion of the plane containing these lines

throughA andB specify the ‘P-line segmenAB.

Because of Theorem 3.1.6, the geomBfrgannot be a model for Euclidean plane
geometry, but it comes very ‘close’. Fix a plane passing through the origin in 3-space and
call it theEquatorial Planeby analogy with the plane through the equator on the earth.

3.1.7 Example Denote byE? the geometry in which the E-points consist of all lines
through the origin in 3-space that are not contained in the equatorial plane and the E-lines
consist of all planes through the origin save for the equatorial plane. In other Bfdgds,
what is left ofP? after one P-line and all the P-points on that P-liré?iare removed.

The claim is thaE? can be identified with the Euclidean plane. Thus there must be
parallel E-lines in this new geometE. Do you see why? Furthermof€, satisfies
Euclid’'s Fifth Postulate.

The figure below indicates hokf can be identified with the Euclidean plane. Look at a
fixed sphere in Euclidean 3-Space centered at the origin whose equator is the circle of
intersection with the fixed equatorial plane. Now look at the plane which is tangent to this
sphere at the North Pole of this sphere.



Every line through the origin in 3-space will intersect this tangent plane in exactly one point
unless the line is parallel in the usual 3-dimensional Euclidean sense to the tangent plane at
the North Pole. But these parallel lines are precisely the lines through the origin that lie in
the equatorial plane. On the other hand, for each pamthe tangent plane at the North

Pole there is exactly one line in 3-space passing through both the origin and the given point
Ain the tangent plane. Thus there is a 1-1 correspondence between the E-gSiatslin

the pointdn the tangent plane at the North Pole. In the same way we see that there is a 1-1
correspondence between E-line&frand the usual Euclidean lines in the tangent plane.

The figure above illustrates the 1-1 correspondence between E-line selygenE? and

the line segmenAB in Euclidean plane geometry.

For reasons, which will become very important later in connection with
transformations, this 1-1 correspondence can be made explicit through the use of
coordinate geometry and ideas from linear algebra. Let the fixed sphere centered at the
origin having radius 1. Then the poirfY) in the Euclidean plane is identified with the
point (x, y, 1) in the tangent plane at the North Pole, and this point is then identified with
the line {a (x, y, 1): —oo <a < oo} through the origin in 3-space.

Since there are no parallel linesFit is clear that the removal froRf of that one P-
line and all P-points on that P-line must be very significant.

3.1.8 ExerciseWhat points do we need to add to the Euclidean plane so that under the
identification of the Euclidean plane wiii the Euclidean plane togethaith these
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additional points are in 1-1 correspondence with the poirR&ivhat line do we need to
add to the Euclidean plane so that we get a 1-1 correspondence with all theRfffes in

Note first that by restricting further the points and lineB%we get a model of a
different geometry. The set of all lines passing through the origin in 3-space and through
the 4% parallel in the Northern Hemisphere of the fixed sphere model determinasia
3-space to be denoted by

3.1.9 Definition. Denote byH?* the geometry whose h-points consists of Euclidean
lines through the origin in 3-space that lie in the inside the lcarel whose h-lines
consist of the intersections of timterior of L and planes through the origin in 3-space.

Again the Euclidean lines throughandB represent h-pointé& andB in H?and the

‘h-line segment’AB is (as indicated in the above figure by the shaded region) the sector of

a plane containing the Euclidean lines through the origin which are passing through

points on the line segment connectigndB. H?is a model oHyperbolicplane

geometry. The reason why it's a model of a 'plane’ geometry is clear because we have only
defined points and lines, but what is not at all obvious is why the name 'hyperbolic’ is

used. To understand that let's try to HSeo create other models. For instance, our

intuition about 'plane’ geometries suggests that we should try to find models in which h-



points really are points, not lines through the origin! One way of doing this is by looking at
surfaces in 3-space, which intersect the lines inside thelL.ceractly once. There are two
natural candidates, both presented here. The second one presented realizes Hyperbolic
plane geometry as the points on a hyperboloid, - hence the name 'Hyperbolic' geometry.
The first one presented realizes Hyperbolic plane geometry as the points inside a disk. This
first one, known as thi€lein Model,is very useful for solving the following exercise

because its h-lines are realized as open Euclidean line segments. In the next section we
study a third model known as tReincaré Disk

3.1.10 ExerciseGiven an h-lind in Hyperbolic plane geometry and an h-pdtot
on the h-line, how many h-lines parallel throughP are there?

3.1.11 Klein Model. Consider the tangent plahg tangent to the unit sphere at its
North Pole, and let the origin M be the point of tangency & with the North Pole. Then

M intersects the corlein a circle, call i, and it intersects each line insiden exactly

one point insid&. In fact, there is a 1-1 correspondence between the lines insia the
points insidex. On the other hand, the intersectiorvbiith planes is a Euclidean line, so
the lines inH? are in 1-1 correspondence with the chordE,afxcept that we must
remember that pointan circleZ correspond to linesnL. So the lines in the Klein model

of Hyperbolic plane geometry are exactly the chords oimitting the endpoints of a

chord. In other words, the hyperbolic h-lines in this modebpesline segments. The
following picture contains some points and lines in the Klein model,




the dotted line on the circumference indicating that these points are omitted.

3.1.11a Exercise.Solve Exercise 3.1.10 using the Klein model.

3.1.12 Hyperboloid model.Consider the hyperbola’ —x* =1 in the x,zplane. Its
asymptotes are the lings= £ x. Now rotate the hyperbola and its asymptotes about the
axis. The asymptotes generate the don@nd the hyperbola generates a two-sheeted
hyperboloid lying insidé. ; denote the upper hyperboloid By Then every line through
the origin in 3-space interseddsexactly once — seléxercise 3.1.13in fact, there is a
1-1 correspondence between the point8 @amd the points il2 The lines inH?
correspond to the curves Brobtained by intersecting the planes though the origin in 3-
space. With this model, the hyperbol@ds a realization of Hyperbolic plane geometry.

3.1.13 Exercise.Prove that every line through the origin in 3-space inter&dis
the Hyperbolic model above) exactly once.

3.2 POINCARE DISK. Although the line geometries of the previous section provide a
very convenient, coherent, and illuminating way of introducing models of non-Euclidean
geometries, they are not convenient ones in which to use Sketchpad. More to the point,
they are not easy to visualize or to work with. The Klein and Hyperboloid models are
more satisfactory ones that conform more closely to our intuition of what a ‘plane
geometry’ should be, but the definition of distance between points and that of angle
measure conform less so. We instead focus on the Poincaré Manibduced by Henri
Poincaré in 1882, where ‘h-points’ are points as we usually think of them - points in the
plane - while ‘h-lines’ are arcs of particular Euclidean circles. This too fits in with our
usual experience of Euclidean plane geometry if one thinks of a straight line through point
A as the limiting case of a circle through pd\vhose radius approach&sas the center
moves out along a perpendicular line throAghThe Poincaré Disk Model allows the use
of standard Euclidean geometric ideas in the development of the geometric properties of the
models and hence of Hyperbolic plane geometry. We will see laté) thaictually a
model of the "same" geometry ld$ by constructing a 1-1 transformation fré#d ontoD.

Let C be a circle in the Euclidean plane. Th&rs the geometry in which the ‘h-points’
are the points insidé and the ‘h-lines’ are the argssideC of any circle intersectinG at
right angles. This means that we omit the points of intersection of these circl€s Wiith
addition, any diameter of the bounding circle will also be an h-line, since any straight line
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through the center of the bounding circle intersects the bounding circle at right angles and

(as before) can be regarded as the limiting case of a circle whose radius approaches infinity.
As in the Klein model, points on the circle are omitted and hyperbolic h-linepamne

-- in this case, open arcs of circles. As we are referring to points @sidb-pointsand

the hyperbolic lines insidé ash-lines it will also be convenient to call thebounding

circle. The following figure illustrates these definitions:

A,B.E,F, and G are
h-points.

More technically, we say that a circle intersectihgt right angles isrthogonalto C. Just

as for Euclidean geometry, it can be shown that through each pair of h-points there passes
exactly one h-line. A coordinate geometry proof of this fact is included in Exercise 3.6.2.
We suggest a synthetic proof of this in Section 3.5. Thus the notiehingf segment

between h-pointé andB makes good sense: it is the portion betw&amdB of the

unique h-line throug andB. In view of the definition of h-lines, the h-line segment
betweerA andB can also be described as the arc betweandB of the unique circle

throughA andB that is orthogonal t€. Similarly, anh-ray starting at an h-poirtin D

is either one of the two portions, betweeand the bounding circle, of an h-line passing
throughA.

Having defined, the first two things to do are to introduce th&tanced, (A, B),
between h-pointé andB as well as thangle measuref ananglebetween h-rays starting
at some h-poind. The distance function should have the same properties as the usual
Euclidean distance, namely:

» (Positive-definiteness): For all poimsandB ( A # B),
d,(A,B)>0 and d(A A) =0;

e (Symmetry): For all pointé andB,

10



dy(A, B) = d\(B, A);
* (Triangle inequality): For all point&, B andC,
d.(A, B) <d(A,C) +d,(C, B).

Furthermore the distance function should satisfyRbker Postulate.

3.2.0. Ruler Postulate: The points in each line can be placed in 1-1 correspondence to
the real numbers in such a way that:

» each point on the line has been assigned a unique real numbeoi@sate;

» each real number is assigned to a unique point on the line;

» for each pair of points A, B on the ling(A, B) = |a - b| wherea andb are the
respective coordinates of A and B.

The function we adopt for the distance looks very arbitrary and bizarre at first, but good
sense will be made of it later, both from a geometric and transformational point of view.
Consider two h-point8, B in D and letM, N be the points of intersection with the
bounding circle of the h-line througy B as in the figure:

We set

| oA Myde N
&(AB = I AN d B M)%
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where d( A M) is the usual Euclidean distance between pdirsdM. Using properties

of logarithms, one can check that the rol&lcéndN can be reversed in the above formula
(see Exercise 3.3.7).

3.2.1 ExerciseShow thatd, (A, B) satisfies the positive-definiteness and symmetry
conditions above.

We now introduce angles and angle measuk® idust as in the Euclidean plane, two
h-rays starting at the same point form an angle. In the figure below we see two intersecting
h-lines formingJBAC.

To find the hyperbolic measune IBAC of [IBACwe appeal to angle measure in
Euclidean geometry. To do that we need the tangents to the arcs at tife pidiet

hyperbolic measure of the angIBAC s then defined to be the Euclidean measure of the

Euclidean angle between these two tangentsniléBAC= mlé&.

Just as the notions of points, lines, distance and angle measure are defined in
Euclidean plane geometry, these notions are all defined #nd, we can exploit the
hyperbolic tools for Sketchpad, which correspond to the standard Euclidean tools, to
discover facts and theorems about the Poincaré Disk and hyperbolic plane geometry in
general.

* Load the “Poincaré” folder of scripts by moving the sketch “Poincare Disk.gsp” into
the Tool Folder. To access this sketch, first open the folder “Samples”, then
“Sketches”, then “Investigations”. Once Sketchpad has been restarted, the following
scripts will be available:
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* Hyperbolic Segment- Given two points, constructs the h-segment joining
them

* Hyperbolic Line - Constructs an h-line through two h-points

* Hyperbolic P. Bisector- Constructs the perpendicular bisector between
two h-points

» Hyperbolic Perpendicular - Constructs the perpendicular of an h-line
through a third point not on the h-line.

* Hyperbolic A. Bisector — Constructs an h-angle bisector.

» Hyperbolic Circle By CP - Constructs an h-circle by center and point.

* Hyperbolic Circle By CR — Constructs an h-circle by center and radius.
» Hyperbolic Angle — Gives the hyperbolic angle measure of an h-angle.

* Hyperbolic Distance- Gives the measure of the hyperbolic distance
between two h-points which do not both lie on a diameter of the Poincare disk.

» The sketch “Poincare Disk.gsp” contains a circle with a specially labeled center called,
‘P. Disk Center’, and point on the disk called, ‘P. Disk Radius’. The tools listed above
work by using Auto-Matching to these two labels, so if you use these tools in another
sketch, you must either label the center and radius of your Poincare Disk accordingly,
or match the disk center and radius before matching the other givens for th&/¢ool
are now ready to investigate properties of the Poincaré Disk. Use the line tool to
investigate how the curvatureloineschanges as the line moves from one passing
close to the center of the Poincaré disk to one lying close to the bounding circle. Notice
that this line tool never produces h-lines passing through the center of the bounding
circle for reasons that will be brought out in the next section. In fact, if you experiment
with the tools, you will find that the center of the Poincare Disk and the h-lines which
pass through the center are problematic in general. Special tools need to be created to
deal with these cases.

(There is another very good software simulation of the Poincaré disk available on the web
at
http://math.rice.edu/~joel/NonEuclid.
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You can download the program or run it online. The site also contains some background
material that you may find interesting.)

3.2.2 Demonstration: Parallel Lines.As in Euclidean geometry, two-linesin D
are said to bparallel when they have nle-pointsin common.

* Inthe Poincaré disk construct lafine | and arh-pointP not onl. Use theh-line script
to investigate if am-line throughP parallel tol can be drawn. Can more than one be
drawn? How many can be drawnEnd of Demonstration 3.2.2.

3.2.3 Shortest Distance.ln Euclidean plane geometry the line segment joining points
P andQ is the path of shortest distance; in other words, a line segment can be described
both inmetricterms and igeometricderms. More precisely, there are two natural

definitions of a line segmemQ, one as the shortest path betwBaandQ, a metric
property, the other as all points betwé&21Q on the unique linepassing througk andQ

- a geometric property. But what do we mearbétwveef® That is easy to answer in terms
of the metric: the line segme®Q consists of all point® on| such thad,(P, R) + d.(R,

Q) =d.(P, Q). This last definition makes good sense alsb Bince there we have defined
a notion of distance.

3.2.3a Demonstration: Shortest Distance.

* Inthe Poincaré disk select two poidtandB. Use the “Hyperbolic Distance” tool to
investigate which point€ minimize the sum
d.(C, A) +d.(C, B).
What does your answer say aboutdime segmenbetweerA andB?
End of Demonstration 3.2.3a.

3.2.4 Demonstration: Hyperbolic Versus Euclidean DistanceSince Sketchpad
can measure both Euclidean and hyperbolic distances we can investigate hyperbolic
distance and compare it with Euclidean distance.

» Draw two h-line segments, one near the center of the Poincaré disk, the other near the
boundary. Adjust the segments until both have the same hyperbolic length. What do
you notice about the Euclidean lengths of these arcs?

» Compute the ratio
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of the hyperbolic and Euclidean lengths of the respective hyperbolic and Euclidean line
segments between poirsB in the Poincaré disk. What is the largest value you can
obtain? End of Demonstration 3.2.4.

3.2.5 Demonstration: Investigatingd, further.
» Does this definition ofi, depend on where the boundary circle lies in the plane?
* What is the effect od, if we change the center of the circle?

* What is the effect od, of doubling the radius of the circle?

By changing the size of the disk, but keeping the points in the same proportion we can

answer these questions. Draw an h-line segf@nand measure its length.

Over on the toolbar change the select arrow t®ilae tool. Select “P. Disk
Center”, thenTransform “Mark Center.” Under th&dit menu “Select All,” then deselect
the “Distance =". Now, without deselecting these objects, drag the P. Disk Radius to vary
the size of the P-Disk and of all the Euclidean distances between objects inside
proportionally. What effect does changing the size of the P-Disk proportionally (relative to
the P-Disk Center) have on the hyperbolic distance between the two endpoints of the
hyperbolic segment?

Over on the toolbar change the select arrow t&ttate tool Select “P-Disk
Center”, thenTransform “Mark Center.” Under th&dit menu “Select All,” then deselect
the “Distance =". Now, without deselecting these objects, drag the P-Disk Radius to
rotate the orientation of the P-Disk. What effect does changing the orientation of the P-Disk
uniformly have on the hyperbolic distance between the two endpoints of the hyperbolic
segment?

Over on the toolbar, change the Rotate tool back tedleet arrow Under theEdit

menu “Select All,” then deselect the “Distance =". Grab the P-Disk Center, and drag the
Disk around the screen. What effect does changing the location of the P-Disk have on the
hyperbolic distance between the two endpoints of the h-line segment?
End of Demonstration 3.2.5.

3.3 Exercises.This Exercise set contains questions related to Abstract Geometries and
properties of the Poincaré Disk.
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Exercise 3.3.1Prove that in a 4-Point geometry there passes exactly 3 lines through
each point.

Exercise 3.3.2The figure to the right is an
octahedron. Use this to exhibit a model of a 4-Point
geometry that is very different from the tetrahedron
model we used in class. Four of the faces have been
picked out. Use these as the 4 points. What must the
lines be if the octahedron is to be a model of a 4-
Point geometry? Make sure you check that all the
axioms of a 4-Point geometry are satisfied.

Exercise 3.3.3We have stated that our definition for the hyperbolic distance between
two points satisfies the ruler postulate, but it is not easy to construct veiy-lioeg
segmentssay ones of length 10. The source of this difficulty is the rapid growth of the
exponential function. Suppose that the radius of the bounding circle is 1 Aruklainh-
pointthat has Euclidean distanc&om the origin € < 1, of course). The diameter of the
bounding circle passing throughis anh-line. Show the hyperbolic distance from the
center of the bounding circle #ois

(d+r)
a-r)
Findr when the hyperbolic distance frokto the center of the bounding circle is 10.

In

Exercise 3.3.4.Use Exercise 3.3.3 to prove that the second statement of the ruler
postulate holds when the hyperbolic line is a diameter of the bounding circle and if to each
point we assign the hyperbolic distance between it and the center of the bounding circle.

That is, why are we guaranteed that each real number is assigned to a unique point on the

line? Hint: Show your function farfrom Exercise 3.3.3 is 1-1 and onto the inteval
1,1).

Exercise 3.3.5Explain why the ruler postulate disallows the use of the Euclidean
distance formula to compute the distance between two points in the Poincaré Disk.

Exercise 3.3.6Using Sketchpad open the Poincaré Disk Starter and find a
counterexample within the Poincaré Disk to each of the following.
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(@) If a line intersects one of two parallel lines, then it intersects the other.
(b) If two lines are parallel to a third line then the two lines are parallel to each other.

Exercise 3.3.7. Using properties of logarithms and properties of absolute value, show
that, with the definition of hyperbolic distance,

4 (A B = In2a(A M(B N)% nEdANA(B M)%
=["Sica N M~ | Hica myaa N

i.e., the roles oM andN can be reversed and the same distance value results.

3.4 CLASSIFYING THEOREMS. For many years mathematicians attempted to

deduce Euclid's fifth postulate from the first four postulates and five common notions.
Progress came in the nineteenth century when mathematicians abandoned the effort to find
a contradiction in the denial of the fifth postulate and instead worked out carefully and
completely the consequences of such a denial. It was found that a coherent theory arises if
one assumes the Hyperbolic Parallel Postulate instead of Euclid's fifth Postulate.

Hyperbolic Parallel Postulate Through a poinP not on a given liné there exists
at least two lines parallel to

The axioms for hyperbolic plane geometry are Euclid’s 5 common notions, the first
four postulates and the Hyperbolic Parallel Postulate. Three professional mathematicians
are credited with the discovery of Hyperbolic geometry. They were Carl Friedrich Gauss
(1777-1855), Nikolai Ivanovich Lobachevskii (1793-1856) and Johann Bolyai (1802-
1860). All three developed non-Euclidean geometry axiomatically or on a synthetic basis.
They had neither an analytic understanding nor an analytic model of non-Euclidean
geometry. Fortunately, we have a model now; the Poincar®dssk model of
hyperbolic plane geometry, meaning that the five axioms, consisting of Euclid’s first four
postulates and the Hyperbolic Parallel Postulate, are true statementd adnadiso any
theorem that we deduce from these axioms must hold trize fon particular, there are
several lines though a given point parallel to a given line not containing that point.

Now, an abstract geometry (in fact, any axiomatic system) is saidcetdggorical if
any two models of the system are equivalent. When a geometry is categorical, any
statement which is true about one model of the geometry is true about all models of the
geometry and will be true about the abstract geometry itself. Euclidean geometry and the
geometries that result from replacing Euclid’s fifth postulate with Alternative A or
Alternative B are both categorical geometries.
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In particular, Hyperbolic plane geometry is categorical and the Poincar@ sk
model of hyperbolic plane geometry. So any theorem valdnust be true of
Hyperbolic plane geometry. To prove theorems about Hyperbolic plane geometry one can
either deduce them from the axioms.( give a synthetic proof) or prove them from the
modelD (i.e., give an analytic proof).

Since both the mod& and Hyperbolic plane geometry satisfy Euclid’s first four
postulates, any theorems for Euclidean plane geometry that do not require the fifth postulate
will also be true for hyperbolic geometry. For example, we noted in Section 1.5 that the
proof that the angle bisectors of a triangle are concurrent is independent of the fifth
postulate. By comparison, any theorem in Euclidean plane geometry whose proof used
the Euclidean fifth postulate might not be valid in hyperbolic geometry, though it is not
automatically ruled out, as there may be a proof that does not use the fifth postulate. For
example, the proof we gave of the existence of the centroid used the fifth postulate, but
other proofs, independent of the fifth postulate, do exist. On the other hand, all proofs of
the existence of the circumcenter must rely in some way on the fifth postulate, as this result
is false in hyperbolic geometry.

Exercise 3.4.0After the proof of Theorem 1.5.5, which proves the existence of the
circumcenter of a triangle in Euclidean geometry, you were asked to find where the fifth
postulate was used in the proof. To answer this question, open a sketch containing a
Poincare Disk with the center and radius appropriately labeled (P. Disk Center and P. Disk
Radius). Draw a hyperbolic triangle and construct the perpendicular bisectors of two of the
sides. Drag the vertices of the triangle and see what happens. Do the perpendicular
bisectors always intersect? Now review the proof of Theorem 1.5.5 and identify where the
Parallel postulate was needed.

We could spend a whole semester developing hyperbolic geometry axiomatically! Our
approach in this chapter is going to be either analytic or visual, however, and in chapter 5
we will begin to develop some transformation techniques once the idea of Inversion has
been adequately studied. For the remainder of this section, therefore, various objects in the
Poincaré dislo will be studiedand compared to their Euclidean counterparts.

3.4.1 Demonstration: Circles A circle is the set of points equidistant from a given
point (the center).

* Open a Poincaré Disk, construct two points, and label the dydO.
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* Measure the hyperbolic distance betwéeandO, d.(A, O), Select the point A and
under theDisplay menu select Trace Points. Now drag A while keepjg, O)
constant.

» Can you describe what a hyperbolic circle in the Poincaré Disk should look like?

» To confirm your results, use the circle script to investigate hyperbolic circles in the
Poincaré Disk. What do you notice about the centem@ of Demonstration
3.4.1.

3.4.2 Demonstration: Triangles. A triangle is a three-sided polygon; two hyperbolic
triangles are said to be congruent when they have congruent sides and congruent interior
angles. Investigate hyperbolic triangles in the Poincaré Disk.

» Construct a hyperbolic trianglBABC and use the “Hyperbolic Angle” tool to measure
the hyperbolic angles dRABC (keep in mind that three points are necessary to name
the angle, the vertex should be the second point clicked).

» Calculate the sum of the three angle measures. Drag the vertices of the triangle around.
What is a lower bound for the sum of the hyperbolic angles of a triangle? What is an
upper bound for the sum of the hyperbolic angles of a triangle? What is an appropriate
conclusion about hyperbolic triangles? How does the sum of the angles change as the
triangle is dragged arouriaf?

The proofs of SSS, SAS, ASA, and HL as valid shortcuts for showing congruent
triangles did not require the use of Euclid’s Fifth postulate. Thus they are all valid
shortcuts for showing triangles are congruent in hyperbolic plane geometry. Use SSS to
produce two congruent hyperbolic triangle®in Drag one triangle near the boundary
and one triangle near the centeDof What happens?

We also had AA, SSS, and SAS shortcuts for similarity in Euclidean plane geometry.
Is it possible to find two hyperbolic triangles that are similar but not congruent? Your
answer should convince you that it is impossible to magnify or shrink a triangle without
distortion! End of Demonstration 3.4.2.

3.4.3 Demonstration: Special TrianglesAn equilateral triangle is a triangle with 3
sides of equal length. An isosceles triangle has two sides of equal length.
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» Create a tool that constructs hyperbolic equilateral triangles in the Poincaré disk. Is an
equilateral triangle equiangular? Are the angles alwa9sa$th Euclidean plane
geometry?

» Can you construct a hyperbolic isosceles triangle? Are angles opposite the congruent
sides congruent? Does the ray bisecting the angle included by the congruent sides bisect
the side opposite? Is it also perpendicular? How do your results compare to Theorem
1.4.6 and Corollary 1.4.77End of Demonstration 3.4.3.

3.4.4 Demonstration: Polygons.

* Arectangle is a quadrilateral with four right angles. Is it possible to construct a
rectangle irb?

» Aregular polygon has congruent sides and congruent interior angles.

» To construct a regular quadrilateral in the Poincaré Disk start by constructing an h-circle
and any diameter of the circle. Label the intersection points of the diameter and the
circle asA andC. Next construct the perpendicular bisector of the diameter and label

the intersection points with the circleBsndD. Construct the line segmemnts,
BC, CD, and DA,.

ABCD is a regular quadrilateral.

ThenABCDis a regular quadrilateral. Why does this work? Create a tool from your
sketch.

* The following theorems are true for hyperbolic plane geometry as well as Euclidean
plane geometry: Any regular polygon can be inscribed in a circle. Any regular polygon
can be circumscribed about a circle. Consequently, any reggtar can be divided
into n congruent isosceles triangles just as in Euclidean plane geometry.
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* Modify the construction to produce a regular octagon and regular 12-gon. Create tools
from your sketches.
End of Demonstration 3.4.4.

By now you may have started to wonder how one could define area within hyperbolic
geometry. In Euclidean plane geometry there are two natural ways of doing this, one
geometric, the other analytic. In the geometric definition we begin with the area of a fixed
shape, a square, and then build up the area of more complicated figures as sums of squares
so that we could say that the area of a figuresiguare inches, say. Since squares don’t
exist in hyperbolic plane geometry, however, we cannot proceed in this way.

Now any definition of area should have the following properties:

» Every polygonal region has one and only one area, (a positive real number).
» Congruent triangles have equal area.

» If a polygonal region is partitioned into a pair of sub regions, the area of the region will
equal the sum of the areas of the two sub regions.

Recall, that in hyperbolic geometry we found that the sum of the measures of the angles of

any triangle is less than 180. Thus we will define the defect of a triangle as the amount by

which the angle sum of a triangle misses the value 180.

3.4.5 Definition. The defect of triangleA ABC is the number
O(AABC)=180-nmJA m B n C

More generally, the defect can be defined for polygons.

3.4.6 Definition. The defect of polygorPP,... P is the number
O(APP,...P)=180(n-2)-mOP, —mOP, —... —mOP,

It may perhaps be surprising, but this will allow us to define a perfectly legitimate area
function where the area of a polyg&® ... Ris k times its defect. The value kbtan be

specified once a unit for angle measure is agreed upon. For example if our unit of angular
measurement is degrees, and we wish to express angles in terms of radians then we use the

constantk = 71/180 . It can be shown that this area function defined below will satisfy all
of the desired properties listed above.

3.4.7 Definition. The areaAreg (RR... B of a polygonFR... P is defined by
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Areg (RB... P)= B( PR.. B
wherek is a positive constant.

Note, that this puts an upper bound on the area of all triangles, namely. 180ore
generally,180(n — 2 [kfor n-gons.) This definition becomes even stranger when we
look at particular examples.

3.4.7a Demonstration: Areas of Triangles.

* Open a Poincare disk. Construct a hyperbolic 'trialg]&@MN having one vertef at
the origin and the remaining two vertiddsN on the bounding circle. This is not a
triangle in the strict sense because points on the bounding circle are not points in the
Poincare disk. Nonetheless, it is the limit of a hyperbolic triafg@AB asA, B
approach the bounding circle.

P,Disk Radius

The 'triangle'A,OMN is called eDoubly-Asymptotitriangle.

« Determine the length of the hyperbolic line segm&Btusing the length script. Then
measure each of the interior angles of the triangle and compute the Aj€x @ (use
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k=1). What happens to these value®\aB approachM, N along the hyperbolic line
throughA, B? Set

Areg (A, OMN =Ilim Area(A, OAB

Explain this value by relating it to propertiesfOMN.

» Repeat this construction, replacing the ceBtéy any poinC in the Poincaré disk.
/\m\
Pk

N

)

P,Disk Radius

What value do you obtain fohreg, (A, CAB? Now letA, B approachM, N along the
hyperbolic line through, B and set

Areg (A, CMN =Ilim Areg(A, CAB

again we say thah, (CMN) is a doubly-asymptotic triangle. Relate the value of
Areg (A, CMN) to properties oA, CMN.

» Select an arbitrary poihton the bounding circle and IEtapproach.. We call
A LMN atriply-asymptotiariangle. Now set
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Areg (A, LMN) =lim Areg(A, CMN.

Explain your value forAreg, (A, LMN) in terms of the properties @, LMN.

End of Demonstration 3.4.7a.
Your investigations may lead you to conjecture the following result.

3.4.8 Theorem.

(a) The area of a hyperbolic triangle is at moskIE@n though the lengths of its sides
can be arbitrarily large.

(b) The area of a triply-asymptotic triangle is alwayskliB@spective of the location of
its vertices on the bounding circle.

By contrast, in Euclidean geometry the area of a triangle can become unboundedly large
as the lengths of its sides become arbitrarily large. In fact, it can be shown that Euclid’s
Fifth Postulate is equivalent to the statemtgre is no upper bound for the areas of
triangles

3.4.9 Summary.The following results are true in both Euclidean and Hyperbolic
geometries:

* SAS, ASA, SSS, HL congruence conditions for triangles.
» Isosceles triangle theorem (Theorem 1.4.6 and Corollary 1.4.7)

* Any regular polygon can be inscribed in a circle.

The following results are strictly Euclidean
» Sum of the interior angles of a triangle is180

* Rectangles exist.

The following results are strictly Hyperbolic
* The sum of the interior angles of a triangle is less thaf. 180
» Parallel lines are not everywhere equidistant.

* Any two similar triangles are congruent.
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Further entries to this list are discussed in Exercise set 3.6.

As calculus showed, there is also an analytic way introducing the area éfia ted
Euclidean plane as a double integral

HAdxdy.

An entirely analogous analytic definition can be made for the Poincaré disk. What is needed
is a substitute fodxdy: If we use standard polar coordinate®) for the Poincaré disk,
then the hyperbolic area of a geis defined by

4rdrd@ -
1-r?

Areg (A = J’IA

Of course, wher is ann-gon, it has to be shown that this integral definition of area
coincides with the value defined by the defecAoip to a fixed constaktindependent of

A. Calculating areas with this integral formula often requires a high degree of algebraic
ingenuity, however.

3.5 ORTHOGONAL CIRCLES. Orthogonal circlesi.e. circles intersecting at right
angles, arise on many different occasions in plane geometry including the Poincaré disk
modelD of hyperbolic plane geometry introduced in the previous section. In fact, their
study constitutes a very important part of Euclidean plane geometry known as Inversion
Theory. This will be studied in some detail in Chapter 5, but here we shall develop enough
of the underlying ideas to be able to explain exactly how the tools constructing h-lines and
h-segments are obtained.

Note first that two circles intersect at right angles when the tangents to both circles at
their point of intersection are perpendicular. Another way of expressing this is say that the
tangent to one of the circles at their point of interse@gasses through the center of the
other circle as in the figure below.
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Does this suggest how orthogonal circles might be constructed?

3.5.1 ExerciseGiven a circleC, centered a© and a poinD on this circle, construct a
circle C,intersectingC, orthogonally aD. How many such circle§,can be drawn?

It should be easily seen that there are many possibilities for CizcBy requiring extra
properties ofC, there will be only one possible choice@f In this way we see how to
construct the unique h-line through two poiRf€) in D.

3.5.2 Demonstration.Given a circleC, centered a0, a pointA not onC, , as well as a
pointD on C,, construct a circl€, passing through A and intersecti@gat D
orthogonally. How many such circl€ can be drawn?

Cl 0

Sketchpad provides a very illuminating solution to this problem.

» Open a new sketch. Draw circlg, labeling its cente®, and construct poirA not on
the circle as well as a poibton the circle.

« Construct the tangent line to the cir€@gatD and then the segmeAD.
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« Construct the perpendicular bisectorAD. The intersection of this perpendicular
bisector with the tangent line to the circléatill be the center of a circle passing
through bothA andD and intersecting the circte, orthogonally abD. Why?

The figure below illustrates the construction when A is outside €cle

What turns out to be of critical importance is the locus of cegfmssing throug andD
and intersecting the given circlg orthogonally aD, asD moves. Use Sketchpad to
explore the locus.

» Select the circl€,, and under thBisplay menuselect trace circle. Drdg.

» Alternatively you can select the cirdBg, then select the poilit and under the
Construct menu select locus.

The following figure was obtained by choosing diffe®riin the circleC, and using a

script to construct the circle through(outsideC,) andD orthogonal taC,. The figure you
obtain should look similar to this one, but perhaps more cluttered if you have traced the
circle.
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Your figure should suggest that all the circles orthogonal to the givenCijrtat pass
throughA have a second common point on the line thraDgthe center o€,) andA. In
the figure above this second common point is labeldsl fipoes the figure remind you of
anything in Physics - the lines of magnetic force in which the pAiatglB are the poles
of the magnet. say?] Repeat the previous construction AvlseinsideC, and you should
see the same result.

End of Demonstration 3.5.2.

At this moment, Theorem 2.9.2 and its converse 2.9.4 will come into play.

3.5.3 Theorem Fix a circleC, with center O, a poir not on the circle, and poiilt on
the circle, Now leB be the point of intersection of the line througkwvith the circle
throughA andD that is orthogonal t€,. Then B satisfies

OAOB= OD.
In particular, the poinB is independent of the choice of poilt The figure below
illustrates the theorem wheéis outsideC,.
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OA = 1.65 inches

OB = 0.52 inches
OA-OB = 0.86 inches?
OD? = 0.86 inches?

Proof. By construction the segme@D is tangential to the orthogonal circle. Hence
OAOB= OD by Theorem 2.9.2. QED

Theorem 3.5.3 has an important converse.

3.5.4 Theorem. Let C, be a circle of radius centered aD. Let AandB be points on a

line throughO (neitherA orB onC,). If OAOB= r then any circle through andB will
intersect the circl€, orthogonally.

Proof. LetD denotea point of intersection of the circ with any circle passing

throughA andB. ThenOA OB= OD. So by Theorem 2.9.4, the line segmem will
be tangential to the circle passing throdgB, andD. Thus the circle centered@iwill be
orthogonal to the circle passing througiB, andD. QED

Theorems 3.5.3 and 3.5.4 can be used to construct a circle orthogonal to a given circle
C, and passing through two given poiRQ insideC,. In other words, we can show
how to construct the unique h-line through two given points P, Q in the hyperbolic plane
D.

3.5.5 Demonstration.

* Open a new sketch and draw the cit€]elabeling its center b§. Now select
arbitrary point? andQ insideC..

* Choose any poird onC..

» Construct the circl€, passing througR andD that is orthogonal t€,. Draw the ray
starting alO and passing throudP. LetB be the other point of intersection of this ray
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with C,. By Theorem 3.5.®P.0OB= OD’. Confirm this by measuringP, OB, and
OD in your figure.

» Construct the circumcircle passing through the veritz€andB of APQB. By
Theorem 3.3.4 this circumcircle will be orthogonal to the given circle.

OP-OB = 1.15 inches?
OD? = 1.15 inches?

Cy

If P andQ lie on a diameter o€, then the construction described above will fail. Why?
This explains why there had to be separate scripts in Sketchpad for constructing h-lines
passing through the center of the bounding circle of the Poincaré tnoflelyperbolic
plane geometry.

The pointsA, B described in Theorem 3.5.3 are said tériwerse PointsThe
mapping takingA to B is said to bénversion The properties of inversion will be studied
in detail in Chapter 5 in connection with tilings of the Poincaré middBkfore then in
Chapter 4, we will study transformation&nd of Demonstration 3.5.5.

3.6 Exercisesin this set of exercises, we’ll look at orthogonal circles, as well as other
results about the Poincaré Disk.

Exercise 3.6.1To link up with what we are doing in class on orthogonal circles, recall
first that the equation of a circf@in the Euclidean plane with radius r and certigk)(is
(x-h)y*+(y-k?=r?
which on expanding becomes
X2 -2nx+y* -Kky+h*+k=ri
Now consider the special case wi@has center at the origin (0, 0) and radius 1. Show
that the equation of the circle orthogonaCtcand having center (h, k) is given by
x?-2hx+y*-2ky+ 1 =0.
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Exercise 3.6.2.0ne very important use of the previcproblem occurs whe@ is the
bounding circle of the Poincaré disk. lfet (a,, a,) andB = (b, b,) be two points inside

the circleC, i.e., two h-points. Show that there is one and only one choide ky {or

which the circle centered dt, ) is orthogonal t&€C and passes throudt B. This gives a
coordinate geometry proof of the basic Incidence Property of hyperbolic geometry saying
that there is one and only one h-line through any given pair of points in the Poincaré Disk.
Assume thaA andB do not lie on a diagonal &.

Exercise 3.6.3.0pen a Poincaré Disk and construct a hyperbolic right triangle. (A right
triangle has one 9(angle.) Show that the Pythagorean theorem does not hold for the
Poincaré dislb. Where does the proof of Theorem 2.3.4 seem to go wrong?

Exercise 3.6.40pen a Poincaré Disk. Find a triangle in which the perpendicular
bisectors for the sides do not intersect. In Hyperbolic plane geometry, can any triangle be
circumscribed by a circle? Can any triangle be inscribed by a circle? Why or why not?

Exercise 3.6.5Find a counterexample in the Poincaré Disk model for each of the

following theorems. That is show each theorem is strictly Euclidean.

(a) The opposite sides of a parallelogram are congruent. (A parallelogram is a quadrilateral
where opposite sides are parallel.)

(b) The measure of an exterior angle of a triangle is equal to the sum of the measure of the
remote interior angles.

Exercise 3.6.6Using Sketchpad open a Poincaré Disk. Construct a Paamid any
diameter of the disk not through Devise a script for producing the h-line throlyh
perpendicular to the given diameter (also an h-line).

Exercise 3.6.7The defect of a certain regular hexagon in hyperbolic geometry is 12.
(k=1)
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» Find the measure of each angle of the hexagon.

» If Ois the center of the hexagon, find the measure of each interior angle of each sub-
triangle making up the hexagon, suchdsBO as shown in the figure.

» Are each of these sub-triangles equilateral triangles, as they would be if the geometry
were Euclidean?

Exercise 3.6.8.Given AABC as shown withd, and d,as defects of the sub triangles
AABD and AADC

prove 0(AABC) = 9, + 4,.
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