M361K (Rusin) TEST 2 - April 132021
All questions count equally. Do your best. Remember the university Honor Code. Submit a PDF of your answers through Canvas by 11:59pm on April 142021.

1. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is defined everywhere and is continuous at $x=0$. (It may be continuous at other points, but that is not an assumption in this question.) Show that for every $\epsilon>0$ there is an interval I around 0 such that for every x and y in I we have $|f(x)-f(y)|<\epsilon$.
2. A function $f: \mathbf{R} \rightarrow \mathbf{R}$ with the property that $f(x+1)=f(x)$ for all x is said to be periodic. Show that if such a function is continuous then there is a point x where $f(x)=f\left(x+\frac{1}{2}\right)$. (Hint: What can you tell me about $g(x)=f(x)-f\left(x+\frac{1}{2}\right) ?$)
3. Show that the sum of two uniformly continuous functions on a set A is also uniformly continuous on A. For extra credit give an example to show that this result would be false if we change the word "sum" to "product".
4. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ has the feature that $f(-x)=f(x)$ for all x. Show that if f is differentiable at the point $x=c$ then f is also differentiable at $x=-c$, and $f^{\prime}(-c)=$ $-f^{\prime}(c)$.
5. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is continuous everywhere and is known to be differentiable at all points except possibly at $x=0$. Show that if $L=\lim _{x \rightarrow 0} f^{\prime}(x)$ exists, then f is also differentiable at $x=0$, and in fact $f^{\prime}(0)=L$. (Hint: apply the Mean Value Theorem to the definition of $f^{\prime}(0)$.)
(Remark: there exist functions f which satisfy the conditions of the first sentence but for which the limit L does not exist; for some such functions, $f^{\prime}(0)$ exists, and for others it does not.)
6. We have not actually proved this in class, but there is a function called exp with a few properties:
(1) $\exp (x)$ is defined and continuous on all of \mathbf{R}
(2) $\exp (0)=1$ and $\exp (1)<3$.
(3) exp is differentiable everywhere, and $\exp ^{\prime}(x)=\exp (x)$ for all x.

Find a polynomial P for which $|P(x)-\exp (x)|<0.01$ for all $x \in[0,1]$, and prove that your polynomial really does have this property.

