
M365C (Rusin) HW11 – comments

1. Let g(x) = log(f(x)). Then g is continuous and g(x+ y) = g(x) + g(y) for any x and y,
so this is essentially the same situation as the question on the last exam: g(x) = cx where
c = g(1). Or you could recreate the spirit of that proof: let c = log(f(1)) and then prove
f(x) = exp(cx) first for x ∈ N, then for x ∈ Z, then for x ∈ Q, then (using continuity) for
x ∈ R.

2. I wanted you to use the fact that ab has been defined to mean exp(b log(a)), so we
are computing the limit of exp(log(1 + x)/x). Since exp is continuous, this is the same
as exp(limx→0 log(1 + x)/x). We may compute that inner limit using L’Hôpital’s Rule;
it is 1. (You could also use the definition of the logarithm function to show that for

x ≥ 0, log(1 + x) =
∫ 1+x

1
(1/t) dt ≤

∫ 1+x

1
1 dt = x and log(1 + x) =

∫ 1+x

1
(1/t) dt ≥∫ 1+x

1
1/(1 + x) dt = x/(1 + x), so the inner limit is 1 by the squeeze theorem, at least as

x→ 0+. Similar inequalities show the other one-sided limit is also 1.

3. Just as we defined the logarithm as a certain integral, let us define a function A : R→ R
by

A(x) =

{∫
[0,x]

1
1+t2 dt if x ≥ 0

−
∫
[x,0]

1
1+t2 dt if x < 0

(a) Of course A(0) = 0 because the interval [0, 0] has a width of zero! The fact that
A(−x) = −A(x) follows from the substitution u = −t.

(b) Continuity on (0,∞) and (−∞, 0) follows from differentiability (see below). To
get continuity at 0 we have to show that the two one-sided limits of A(x) as x→ 0 are 0.
But since the integrand 1/(1 + t2) is everywhere at most 1, it follows that |A(x)| ≤ |x| for
every x, which forces limA(x) = 0.

(c) Differentiability away from 0 follows from the Fundamental Theorem of Calculus;
in fact A′(x) = 1/(1 + x2) for these x. It’s also true that A′(0) exists and equals 1. To
see this write 1/(1 + t2) as 1 − t2/(1 + t2) and then integrate to get A(x) = x − B(x)
where B(x) =

∫ x

0
t2/(1 + t2) dt. The point of this move is that t2/(1 + t2) ≤ t2 for all t,

so B(x) ≤
∫ x

0
t2 dt = x3/3 (with a companion inequality for x < 0. ) Then we are ready

to compute A′(0) straight from the definition of the derivative. Since A(0) = 0, it will be
the limit at 0 of A(x)/x = 1 − B(x)/x, but |B(x)/x| ≤ x2/3 so B(x)/x → 0 and thus
A(x)/x→ 1. That is, A′(0) exists and equals 1.

(d) Since A′(x) > 0 for all x, A is everywhere increasing.
(e) For any t > 0 we have 1/(1 + t2) > 1/t2 and thus for any b > a > 0 we have∫ b

a
1/(1 + t2) dt >

∫ b

a
1/t2 dt = F (b) − F (a) where F (t) is an antiderivative of 1/t2, such

as F (t) = −1/t. So we have
∫ b

a
(1/t) dt < 1/a − 1/b for all b > a > 0, and thus A(x) =∫ a

0
1/(1 + t2) dt+

∫ x

a
1/(1 + t2) dt < C − 1/x < C where C =

∫ a

0
1/(1 + t2) dt+ 1/a for any

choice of a, say a = 1 . This shows the values of A are bounded, and hence have a least
upper bound. (It’s π/2.)

(f) An increasing function A has an inverse defined on the image of A, which in our case
is (−π/2, π/2). If the inverse is called T then T is differentiable at any point c = A(b) where



A′(b) exists and is nonzero; in fact T ′(c) = 1/A′(b) = 1/A′(T (c)). All those statements
apply in our case, and since A′(x) = 1/(1 + x2) for all x, we have T ′(c) = 1 + (T (c))2.
There is a function S(x) defined on (−π/2, π/2) to be S(x) =

√
1 + T (x)2; then we have

the formula T ′(x) = S(x)2 for all x in this interval.
Of course, these functions are typically given other names: the one I have called

A is called the “arctangent” function; T is the tangent function (or more precisely the
restriction of the tangent function to a single period), and likewise S is (the restriction of)
the secant function. Other definitions of these functions exist; for example, after we define
the cosinge function in class by means of a power series, we could define the secant to be the
reciprocal of the cosine. One can show that the two definitions agree by, for example, using
the definitions to compute the Taylor series for each of the two functions, and verifying
that the Taylor series converge to the two functions (at least on (−π/2, π/2)); at that point
one needs only observe that the two Taylor series are identical, so the functions must be
identical too (at least on that interval).

4. This is a tricky topic. It’s not hard to define a “functional square root” of the exponential
function as shown in the exercises, but it’s hard to arrange for it to be very smooth. One can
show that there cannot be a complex-analytic such function f , for example, while Kneser
proved in 1949 that there is a real-analytic function. Before addressing the questions asked
in the homework, let me put the problem into a broader framework for you.

Somewhat atypically, in this problem we will not try to keep the domain and range as
two separate copies of R. Rather, the function f : R→ R that we are trying to construct
should be thought of as a transformation moving points within a single copy of the real
line. The exponential function already does this: it moves 0 to 1, 1 to e, etc., and at the
same time moves the whole interval [0, 1] over to [1, e]. We will construct a function f to do
something similar: we will describe a sequence of points 0 = a0 < a1 < a2 < . . . and arrange
it so that f carries each an to the next point an+1 in the sequence; our f will be increasing
so it will then carry each interval [an−1, an] onto the interval [an, an+1]. Then the composite
f ◦f can be viewed as simply “taking two steps” along the real line in this way. We simply
want to arrange it so that that (Texas) two-step matches the motion of a single step of exp.
(In particular, we will have for each n ≥ 0 that an+2 = f(an+1) = f(f(an)) = exp(an).
Since for every x > 0 we surely have exp(x) > 1 + x — that’s clear from the Taylor series
for exp — it follows that each an+2 > an + 1, and then by induction a2k > k, which in
particular means the set of points an is unbounded: our function f will be defined on all
of [0,∞).)

With this picture in mind, let us begin to construct f .
We begin by selecting any a ∈ (0, 1) to be our first point a1; we have already decided

we want an+2 to be exp(an) so we will need a2 = 1, and we want to have f carry a0 = 0 to
a1 = a and carry a1 to a2 = 1, and in fact carry the whole interval [a0, a1] onto [a1, a2]. So
we select any increasing function f1 mapping [0, a] onto [a, 1]. Note that f1 has an inverse
defined on [a, 1].

The definition of f on the second interval [a1, a2] is then forced on us by the require-
ment that f ◦ f = exp : each such point x is already of the form f(y) for some y in the
first interval [a0, a1], so we must have f(x) = f(f(y)) = exp(y); that is, we are forced to
have f2(x) = exp(f−1(x)) for all x in the second interval. (Observe that this definition



would imply f2(a1) = exp(f−1(a1)) = exp(a0) = exp(0) = 1, which agrees with the value
of f1(a1). That is, we have defined f separately on the first and second (closed) intervals,
and the definitions given for f1 and f2 agree on the single point a1 of intersection of those
intervals.) We have now defined f on the interval [0, a2], and we have done so to ensure
that for any x ≤ a1 we have f(f(x)) = exp(x).

At this point the extension to all of [0,∞) is clear. To define f on the third interval
[a2, a3], for example, we again use the formula f3(x) = exp(f−12 (x)). In words, we can
walk forward one step (i.e. apply f) by walking backward one step (i.e. apply f−1) and
then walk forward two steps (which is supposed to be accomplished by applying exp).
Alternatively, we may walk backward two steps (apply exp−1 = log), then forward one
(apply f), then forward two more (apply exp); in formulas, f3(x) = exp(f1(log(x))). This
is possible because we have already defined the action of f (i.e. of f1) on the first interval;
and this formalism may be preferable because we do not have to invert f2. (Of course we
inverted f2◦f2 = exp instead, but you probably feel more comfortable with log than you do
with f−12 !) In exactly the same way we define each function fn : [an−1, an]→ [an, an+1] by
either fn(x) = exp(f−1n−1(x)) or fn(x) = exp(fn−2(log(x))). As in the previous paragraph,
the definitions of fn−1(an−1) and fn(an−1) agree (both send an−1 to an).

We began with an invertible f1 on the first interval. If f1 is continuous there, then
its inverse is continuous on the second interval (“a continuous, invertible function on a
compact set has a continuous inverse”); since exp and log are continuous on their whole
domains, it follows by induction that all the remaining functions fn are continuous on their
domains and, since the definitions are now of continuous functions on closed domains, we
know that glueing them together gives a function that is continuous everywhere.

The fact that the resulting function f : [0,∞) → R then satisfies f ◦ f = exp is now
clear from the construction. Given any x > 0 choose the n such that x ∈ [an−1, an]; then
f(x) = fn(x) will by construction lie in [an, an+1], so we will have f(f(x)) = f(fn(x)) =
fn+1(fn(x)); but fn+1 was constructed precisely so that this composite would be exp(x)

Now, for differentiability, we must assume at the outset that f1 is differentiable on the
first interval [a0, a1]. From the Inverse Function Theorem, we may conclude that f−11 is also
differentiable everywhere on [a1, a2] assuming that f ′1 is never zero on [0, a], a requirement
which I forgot to include on the homework assignment. (It really is necessary to have
f ′(x) > 0 for all x: the condition f ◦ f = exp would lead to a contradiction if f ′(c) = 0
since the derivative of exp is nonzero at every point.) Once we know f−11 is differentiable,
it follows that f2 is differentiable (since exp is), using the Chain Rule. Then since exp and
log are both differentiable, we prove that each fn is differentiable on its domain since fn−2
is, again using the Chain Rule.

However, glueing two differentiable functions together does not necessarily give a
function that is differentiable at the point where the domains overlap. We must know that
the left- and right-derivatives agree (i.e. those limits with h→ 0+ and with h→ 0− must
agree). Specifically, differentiability at a1 = a requires that the right-hand derivative,
which will be exp(a0)f ′1(a0) = 1/f ′1(0), must match the left-hand derivative, which is
simply f ′1(a). So we need f ′1(0) · f ′1(a) = 1. Similarly differentiability at a2 requires that
exp(a1)/f ′2(a1) = f ′2(a2), but that simplifies (eventually) to the same condition f ′1(0) ·
f ′1(a) = 1. Around later endpoints an we may simply use the fact that f = exp ◦f ◦ log to



deduce that if f is differentiable at an−2 then it is also differentiable at an.
We can achieve greater amounts of smoothing of f by imposing more and more con-

ditions about the values of f1 and its derivatives at both a0 and a1.
Let me point out that in this problem I viewed the application of the function exp as a

kind of discrete step each point takes to the right. We computed a “functional square root”
f by cutting that step in half; then in fact we may view all of f , exp, and log as members
of the family of all powers of f : exp = f2, log = f−2, and of course there are multiple steps
f3 and f−5, etc. One can interpolate other functions in the family — functional cube roots
of exp and so on — if we can refine our construction so that instead of having a single
transformation f : R→ R that makes every point jump far to the right, we instead could
define an “evolution” Ft(x) which prescribed where each point should move to at time t,
starting with F0(x) = x and ending with F1(x) = exp(x) (or more generally we could let
time continue to move on; what we want is for Ft+1(x) = exp(Ft(x)). The usual choice
is to have the evolution be the same for all points, that is, if after an amount of time t
we have watched point a move to point b and also seen point b move to point c, then we
should expect that by time 2t, point a will in turn have moved to that same point c. In
symbols: Fu(Ft(x)) = Fu+t(x). In that case, we really only need to watch where the point
x = 0 goes at time t, i.e. we simply need a function φ(t) = Ft(0) which has the property
that φ(t + 1) = exp(φ(t)). We would then be able to recover Ft(x) = φ(t + φ−1(x)), and
then could create our “functional square root” as F1/2(x). You may wish to read up on
this Abel functional equation.


