Allow me to comment on a couple other questinos from HW1.
5. Prove that between any two irrational numbers there exists another irrational number.

As a lemma, you might prove that between any rational number r and any irrational number x there exist irrational numbers; for example the midpoint $m=(x+r) / 2$ is surely not rational (because then $x=2 m-r$ would be rational).

So now given irrational numbers a and b, consider the midpoint $c=(a+b) / 2$. If it is irrational we are done. If instead it is rational, we may then use the lemma to find an irrational between a and c and again we are done.

Alternatively, you might consider the two numbers $c=(a+b) / 2$ and $d=(2 a+b) / 3$ between a and b. Since $a=2 d-2 c$ is irrational, c and d cannot both be rational, so at least one of them is the irrational we seek.
8. Let $S=\left\{x \mid x^{3}>7\right\}$. Show that if y is a rational number in S then there is a smaller rational number y^{\prime} also in S. (Hint: Find y^{\prime} using Newton's method. In order to show $y^{\prime} \in S$ you may wish to write $y=a+h$ where a is the (real) cube root of 7.)

Newton's method proposes finding solutions to equations $f(X)=0$ by iteration: if y is an approximate solution, then $y^{\prime}=y-f(y) / f^{\prime}(y)$ is typically a closer approximation. In the case $f(X)=X^{3}-7$ this method proposes replacing a number y which is close to $a=7^{1 / 3}$ with the number $y^{\prime}=\left(2 y^{3}+7\right) /\left(3 y^{2}\right)$. I suggested this as a hint because it has the features we want. The very definition makes y^{\prime} smaller than y since $f(y)=y^{3}-7>0$ and $f^{\prime}(y)=3 y^{2}>0$, Our last formula shows y^{\prime} is clearly rational if y is. All we have left is to show $y^{\prime} \in S$. We can demonstrate this in a couple of ways.

First of all, if y is close to a, let's write it as $y=a+h$. Then $y^{\prime}=\left(2(a+h)^{3}+\right.$ $7) /\left(3(a+h)^{2}\right)$ is also close to a and so we will write it as $y^{\prime}=a+h^{\prime}$, where $h^{\prime}=y^{\prime}-a$ may be computed algebraically as

$$
h^{\prime}=\frac{2(a+h)^{3}-3 a(a+h)^{2}+7}{3(a+h)^{2}}=\frac{3 a h^{2}+2 h^{3}+\left(7-a^{3}\right)}{3(a+h)^{2}}=\frac{h^{2}(3 a+2 h)}{3(a+h)^{2}}
$$

Since $y>a>0,3 a+2 h>0$ which means $h^{\prime}>0$, i.e. $y^{\prime}>a$ so that $y^{\prime} \in S$.
Alternatively, we can actually calculate $\left(y^{\prime}\right)^{3}-7$ and see that it is positive, placing y^{\prime} into S. (This is more similar to Rudin's approach.) Indeed, if we write Y for y^{3}, we compute

$$
\left(y^{\prime}\right)^{3}-7=\frac{(2 Y+7)^{3}}{27 Y^{2}}-7=\frac{8 Y^{3}-105 Y^{2}+294 Y+343}{27 Y^{2}}=\frac{(8 Y+7)(Y-7)^{2}}{27 Y^{2}}
$$

which is clearly positive.
These two calculations show that whether we measure how far y is from a or how far y^{3} is from 7 , we will see that in each iteration the distance get quadratically smaller: there will be roughly twice as many zeros after the decimal point each time. Newton's method computes $7^{1 / 3}$ fast!

