
M365C (Rusin) HW5 comments

1. The book has proofs that, under these hypotheses, {1/bn} converges (to 1/ lim(bn))
and then that the sequence cn = (an) · (1/bn) converges as well (to (lim an) · (1/ lim bn)
). But it is not a bad idea for you to prove this directly: if an → A and bn → B then
given any positive ε we can find an N = N(ε) past which every |an − A| < ε|B|/4 and
|bn − B| < ε|B|2/2|A| and furthermore (taking N larger if necessary) we may assume
|bn −B| < |B|/2. (Note that this last inequality forces |bn| > |B|/2.)
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2. The distance d(an, am) works out to |1/(n + 1) − 1/(m + 1)|. (It helps to note that
xn ≥ xm for all x ∈ [0, 1] if n < m: the graphs don’t cross.) So given ε > 0, for any n and
m which are both larger than 1/ε, we have d(an, am) < max(1/n, 1/m) < ε.

You might think the sequence is “trying” to converge to a discontinuous function which
is zero everywhere except at x = 1 . But convergence in this metric space is not the same
as what is called “pointwise convergence”. Rather, the an are converging to the function
a∗ which is zero for every x. In fact, just as above, we compute d(an, a∗) = 1/(n + 1),
which is easily forced to be less than any pre-assigned ε.

Of course, one can prove this is a Cauchy sequence by first showing that it converges!

3. Using the definition of a Cauchy sequence, with ε = 1, shows that a sequence is a
Cauchy sequence if and only if it is eventually constant (i.e. all but a finite number of
terms are equal to each other). Such sequences are obviously also convergent.

4. I’m sorry, I tend to forget that Continued Fractions is not part of the current high
school curriculum. What you need to know is this: by the Continued Fractions algorithm
(or otherwise), you know that there exist infinitely many rational numbers pn/qn which
are “really good” approximations to π: for example we can insist that |pn/qn−π| < 1/q2n.
Then for each such n we have |pn − qnπ| < 1/qn. Then by the periodicity of the sine
function,

| sin(pn)| = | sin(qπ + (pn − qnπ))| = | sin(pn − qnπ)| < |pn − qnπ| < 1/qn



since | sin(x)| < |x| for all x ∈ R. So the integers pn form a subsequence whose sines
approach zero.

5. If the xn do converge, say to some number L, then taking the limit of both sides of the
equation xn+1 = xn(2 − Axn) shows that L = L(2 − AL). That’s a quadratic equation,
and its roots are 0 and 1/A. So either the sequence converges to 1/A, or it converges to 0,
or it does not converge at all. Some examples suggest that the first possibility is the right
one. We verify this by using the definition of convergence. But note that that definition
emphasizes the distances to the limit rather than the individual numbers xn!

So let us define a new sequence en = xn − 1/A, so that xn = 1/A + en. We will
show the en decrease to zero by using the given recurrence relation: it implies that en+1 =
xn(2−Axn)−1/A = (1/A+en)(1−Aen)−1/A = −Ae2n, or equivalently Aen+1 = −(Aen)2.
By induction we conclude Aen = −(Ae0)(2

n) for every n > 0, so that the sequence en
converges (very rapidly!) to zero as long as |Ae0| < 1, i.e. as long as 0 < A < 2. (One can
apply this process for any nonzero A but as you can see one must start with a comparably
small initial “error” e0 = x0 − 1/A.)

Note: This sequence arises from applying Newton’s Method to the function f(x) =
1/x−A. A similar analysis applies in every application of Newton’s method, with similarly
rapid convergence: it’s called “quadratic convergence”, and in practice it gives twice as
many decimal digits of accuracy with each repetition of the recurrence. For example, one
may use it on f(x) = 1/x2 −A to compute 1/

√
A using the recurrence
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These two examples are especially nice because they allow the computation of inverses and
square roots using only addition, subtraction, and multiplication, not division (except by 2
— a bit shift, in computer lingo).

Mathematically that’s interesting because there are metric spaces other than R where
we might want to perform computations, specifically the ring of all real power series in
one variable X: we give this set a metric like the 2-adic metric; where d(f, g) = 2−r and
r is the lowest power of X that appears in f − g. I invite you, for example, to compute
1/
√
A in the case where A = 1 − 4X; it’s a power series which we can approximate with

the sequence defined recursively in the previous paragraph:

f0 = 1

f1 = 1 + 2X

f2 = 1 + 2X + 6X2 + 20X3 + 16X4

f3 = 1 + 2X + 6X2 + 20X3 + 70X4 + 252x5 + 924X6 + 3432X7 + 8496X8 + . . .

and so on. Again there is “quadratic convergence”: each successive iteration doubles the
number of coefficients that occur in the actual Taylor series of f(X) = 1/

√
1− 4X. In

particular, each fn has all the coefficients correct up to and including that of X2n−1. Call
that last correct coefficient cn.

This particular Taylor series is especially interesting because the coefficients happen
to be the numbers in the middle column of Pascal’s triangle. Those numbers are easily
seen to have lots of prime factors. In particular, that last “correct” coefficient in fn is
divisible by all the primes between 2n and 2n+1, that is, all the n-bit primes (when written
in binary)!

So here is a very easy way to factor a large number N (let’s say, a number written
out with a few hundred bits, in binary). Such a number only has prime factors which are
at most a couple hundred bits long, right? So we need only repeat the following steps for
n = 1, 2, . . . a couple hundred times:

(1) Compute fn from the above recursion.
(2) Pick out the coefficient cn.
(3) Compute the greatest common divisor gcd(N, cn).

(The last step can be accomplished very quickly using the Euclidean Algorithm, and
in fact all the computations may be done modulo N if you wish.)

When, for example, N is a composite number used for encryption in the common
RSA algorithm, it is typically the product of two prime numbers, almost surely one of
them appearing in step 3 for one value of n and the other appearing for a later value of n.
There are refinements of the algorithm to handle exceptional cases, so really there appears
to be no bottleneck! Factoring large numbers is actually easy!

Or is it?


