
M365C (Rusin) HW7 – comments

1. You need to find a disk around each point P = (a, b) ∈ R2 that f carries into the
interval (C − ε, C + ε), where C = f(P ) = a+ b, that is, you need to know (a, b) is in the
interior of the pre-image of this interval. Since the preimage of each value c ∈ R is the line
x+ y = c of slope −1, the preimage of the interval is a stripe of slope −1 (i.e. a union of
these lines), and it’s pretty clear from a picture that there is a disk centered around (a, b)
that lies inside there.

In formulas, if we are given an ε > 0, let δ = ε/2. Then for any point Q = (x, y) ∈ R2

with d(P,Q) < δ, we know |x− a| < δ and |y− b| < δ since each of these legs of a triangle
is shorter than the hypotenuse of length d(P,Q). Then a− δ < x < a+ δ and likewise for
y, so f(Q) = x+y lies between f(P )+2δ and f(P )−2δ, i.e. |f(Q)−f(P )| < ε, as desired.

With a bit more work, we can show that the larger value δ = ε/
√

2 also works, but
why bother? The point is simply to show that a δ exists; there is no virtue in finding the
biggest possible disk around P that lies inside the preimage of (C − ε, C + ε).

You might want to observe that the δ that I proposed does not depend on the point
P , so that in fact addition is uniformly continuous. What about multiplication?

2. The supremum distance between fn and the zero function f0 is n, so obviously these
distances are not tending to zero: the sequence {fn} does not converge to f0 in this metric.

For any positive real p, dp(fn, f0)p =
∫ 1/n

0
|n(1 − nx)|p dx may be computed by sub-

stitution: let u = 1− nx to get
∫ 1

0
np−1up du = np−1/(p+ 1). So the distance from fn to

f0 is a constant (i.e. independent of n) multiple of n1−(1/p). If p = 1, this distance is 1
for every n, and not converging to zero, and if p > 1, the distance is a positive power of n
and hence increases without bound as n increases, so in neither of these cases does {fn}
converge to f0. On the other hand if p < 1, then the distance is a negative power of n and
hence decreases to 0, meaning fn → f0 in this case.

For each x > 0 the sequence of numbers fn(x) converges to 0; in fact all the terms in
the sequence are exactly 0 as soon as n > 1/x. On the other hand the sequence of numbers
fn(0) = n clearly diverges. Thus {fn} converges pointwise to f0 on (0, 1] but not on [0, 1].

Note that if f and g are continuous functions and M = maxx∈[0,1] |f(x) − g(x)|,
then dp(f, g) = (

∫ 1

0
|f(x) − g(x)|p dx)1/p ≤ (

∫ 1

0
Mp dx)1/p = M . On the other hand we

could use the definition of continuity to show that for every ε > 0 there is a subinterval
of some length L = 2δ < 1 on which |f(x) − g(x)| > M − ε = N, say; then integral
inequalities like we just used will also show dp(f, g) ≥ L1/pN , and since L < 1, this
quantity approaches N as p → ∞. So limp→∞ dp(f, g) ≥ M − ε for every ε > 0, and we
conclude limp→∞ dp(f, g) = M . So it is quite natural to denote this M as d∞(f, g).

3. For every a the evaluation function ea is continuous at each point f0 ∈ C0[0, 1], if
we use the supremum metric there. Indeed this ea is uniformly continuous; we may use
simply δ = ε. For if d(f, f0) < δ, then max(|f(x)− f0(x)|) < ε; but then |ea(f)− ea(f0)| =
|f(a)− f0(a)| ≤ max(|f(x)− f0(x)|) < ε, as desired.

But for every a we can also show that ea is not continuous anywhere if we use the
metric d1: as in the previous problem we can make a L1-convergent sequence of “bump”



functions fn with their maxima at a. Then ea(f0 +fn) = ea(f0) + ea(fn) will diverge from
ea(f0) as n→∞ even though {f0 + fn} converges to f0 in the L1 metric. This means ea
cannot be continuous at f0 (for every function f0.)

4. I intended you to use Theorem 4.4. You should begin with the observation that the
identity function IX : X → X on any metric space X is continuous (that means IX(x) = x
for every x ∈ X); the proof simply uses δ = ε. Even easier: constant functions c : X → Y
are always continuous — you can use any positive δ you like!

So in particular IR : R→ R is continuous. Then the squaring function m2 : R→ R
is the product of two continuous functions (m2 = IR · IR) and hence continuous. By
induction we similarly prove each nth power function mn(x) = xn is continuous at every
point of R. Then the monomial functions cxn are products and hence continuous, and
finally all polynomials, being sums of continuous monomial functions, are also continuous
at every point in R.

Then rational functions are continuous at every point in their domain: as quotients
of polynomials they are continuous wherever the denominator is nonzero, and the domain
is also the set of points where the denominator is nonzero.

Note that this argument does not claim that a rational function like (x2 − 1)/(x− 1)
is continuous at x = 1: even though we usually cavalierly claim that (x2 − 1)/(x − 1) =
x + 1, which is defined (and continuous) at x = 1, it’s not quite the same function as
(x2 − 1)/(x− 1) because the domain is different!

5. As proved in class, f will be uniformly continuous on any compact interval.
It follows that it’s uniformly continuous on every bounded interval I since if we find

(for each ε > 0) a positive δ that works for every point of the closure Ī, then a fortiori it
works at each point of I.

So to get an interval for part (b), you must use an unbounded interval such as I =
(0,∞). And indeed this f is not uniformly continuous there. It’s not sufficient to say “I
could not find δ that worked equally well for all the points of I” — you must show that
no such δ exists (for some particular positive ε).

So let me show that no δ works for say ε = 1. That is, I will show that there is no
single δ > 0 for which

for all x and y in R, |y − x| < δ ⇒ |y3 − x3| < 1

If such a δ existed, then in particular we could apply the stated property to y = x+ δ/2.
But then y3 − x3 = 3x2δ + 3xδ2 + δ3 > 3x2δ, and this is not less than 1 as soon as
x2 > 1/(3δ).

Informally you should get used to this idea: for smooth functions f : R→ R (such as
the cubing function here), in order to prove continuity of f at a point a you will find a δ
which is approximately ε/|f ′(a)|. So a function will not be uniformly continuous on a set
unless its derivative stays bounded there. For the cubing function f we know f ′(x) = 3x2

is unbounded on my I.


