M365C (Rusin) HW10 - due Thursday, Nov 212019

1. Let

$$
f(x)= \begin{cases}1 / q & \text { if } x=p / q \in \mathbf{Q}, \text { in lowest terms } \\ 0 & \text { if } x \in \mathbf{R}-\mathbf{Q}\end{cases}
$$

Determine the value of the integral $\int_{[0,1]} f$, or prove that the function is not integrable.
2. If f^{2} is integrable on an interval, must f also be integrable? (You cannot use theorem 6.11 because we don't know that $f=\sqrt{f^{2}}$, because we don't know f is everywherepositive.)
3. Prove the Integral Test from Calculus: given a function $f:[0, \infty) \rightarrow \mathbf{R}$ which is (i) everywhere-positive and (ii) everywhere-decreasing, then the infinite series $\sum_{n \geq 0} f(n)$ converges iff the limit

$$
\lim _{T \rightarrow \infty} \int_{0}^{T} f(t) d t
$$

exists.
4. Show that if f is integrable on an interval J then so is $|f|$, and

$$
\left|\int_{J} f\right| \leq \int_{J}|f|
$$

5. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is continuous. Show that if $f(x) \geq 0$ on an interval J and $\int_{J} f=0$, then $f(x)=0$ for all $x \in J$. Does the conclusion hold if we weaken the hypothesis from "continuous" to "integrable"?
