M365C (Rusin) HW11 - due Thursday, Dec 52019
REMINDER: There will be NO CLASS on Tuesday, Nov 26.

1. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is continuous and everywhere-positive, and satisfies the condition $f(a+b)=f(a) f(b)$ for all real a and b. Show that for some constant c we have $f(x)=$ $\exp (c x)$.
2. Compute $\lim _{x \rightarrow 0}(1+x)^{1 / x}$. For once, I do not want you to blindly assume all the calculation tricks you used in Calculus; please be prepared to actually justify your calculations with definitions and theorems used in class or in the text.
3. Just as we defined the logarithm as a certain integral, let us define a function $A: \mathbf{R} \rightarrow \mathbf{R}$ by

$$
A(x)= \begin{cases}\int_{[0, x]} \frac{1}{1+t^{2}} d t & \text { if } x \geq 0 \\ -\int_{[x, 0]} \frac{1}{1+t^{2}} d t & \text { if } x<0\end{cases}
$$

Prove the following:
(a) $A(0)=0$ and $A(-x)=A(x)$ for all $x>0$.
(b) A is continuous everywhere
(c) A is differentiable everywhere
(d) A is increasing everywhere
(e) The values of A are bounded. (So the number $2 \sup (A(x))$ is well-defined. By tradition this number is named " π ".)
(f) A has an inverse function $T:(-\pi / 2, \pi / 2) \rightarrow \mathbf{R}$ which is differentiable. Compute the derivative $T^{\prime}(x)$. (You may express your answer in terms of x and T.)
4. Is there a function $f: \mathbf{R} \rightarrow \mathbf{R}$ which has the property that $f \circ f=\exp$? Let us try to construct one.
(a) Suppose a is any number in the interval $(0,1)$, and $f_{1}:[0, a] \rightarrow[a, 1]$ is a continuous, increasing function with $f_{1}(0)=a$ and $f_{1}(a)=1$. Show that there is a unique continuous function $f_{2}:[0,1] \rightarrow \mathbf{R}$ which has the property that $f_{2}(x)=f_{1}(x)$ for all $x \leq a$ and $f_{2} \circ f_{2}=\exp$ on $[0, a]$. (The first condition - that f_{2} agrees with f_{1} on the domain of the latter - is expressed by saying that f_{2} is a continuous extension of f_{1}.)
(b) Show similarly that f_{2} has a continuous extension to a function $f_{3}:\left[0, e^{a}\right] \rightarrow \mathbf{R}$ which has the feature that $f_{3} \circ f_{3}=\exp$ on $[0,1]$. Continue by induction to construct a function $f:[0, \infty) \rightarrow \mathbf{R}$ which has $f \circ f=\exp$ on all of $[0, \infty$). (Be sure to explain why your function f is defined on all of $[0, \infty)$.)
(c) Show that if f_{1} is differentiable on $(0, a)$ then f_{2} is differentiable on both $(0, a)$ and on $(a, 1)$. Give a condition that guarantees that f_{2} is also differentiable at a.

