M365C (Rusin) HW2 - due Thursday, Sept 122019

1. Show that the intervals $(0,1)$ and $(0, \infty)$ have the same cardinality.
2. If $f: X \rightarrow Y$ is a function and $A \subseteq X$ and $B \subseteq Y$, we can define sets

$$
f(A)=\{f(x) \mid x \in A\} \subseteq Y \quad \text { and } \quad f^{-1}(B)=\{x \in X \mid f(x) \in B\} \subseteq X
$$

Pick at least three of the following statements and either prove it must be true or give a counterexample.

$$
\begin{array}{cc}
f\left(A_{1} \cap A_{2}\right)=f\left(A_{1}\right) \cap f\left(A_{2}\right) & f^{-1}\left(B_{1} \cap B_{2}\right)=f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right) \\
f\left(A_{1} \cup A_{2}\right)=f\left(A_{1}\right) \cup f\left(A_{2}\right) & f^{-1}\left(B_{1} \cup B_{2}\right)=f^{-1}\left(B_{1}\right) \cup f^{-1}\left(B_{2}\right) \\
f\left(f^{-1}(B)\right)=B & f^{-1}(f(A))=A
\end{array}
$$

(When counterexamples exist, you might want to ask yourself whether some additional conditions might be imposed on f, X, A etc to make the statement true!)
3. I said in class that no matter how big a set is, its power set is always bigger. Prove this: if X is any set and $f: X \rightarrow \mathcal{P}(X)$ is any function, then f is not a surjection. (Hint: $A=\{x \in X \mid x \notin f(x)\}$ is an element of $\mathcal{P}(X)$. You might get less of a headache if you first experiment with some f_{s} defined on some small sets X !)
4. If X and Y are ordered sets, and $f: X \rightarrow Y$, then we say that f is an increasing function if $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$. Prove that an increasing function $f: \mathbf{N} \rightarrow \mathbf{N}$ necessarily has $x \leq f(x)$ for all $x \in \mathbf{N}$. (Use induction.)
5. Show that the only function $f: \mathbf{R} \rightarrow \mathbf{R}$ which preserves both addition and multiplication is the identity. (That is, if for every $x, y \in \mathbf{R}$ we have $f(x+y)=f(x)+f(y)$ and $f(x y)=f(x) f(y)$, then $f(z)=z$ for all $z \in \mathbf{R}$.) Hint: show $f(z) \geq 0$ whenever $z \geq 0$ by thinking about squares; then show f is increasing. On the other hand, show $f(z)=z$ whenever z is an integer, and then whenever z is rational. Then complete the proof.
6. Let $F=\mathbf{Z}_{3} \times \mathbf{Z}_{3}$. Define two operations on F as follows:

$$
(a, b)+(c, d)=(a+c, b+d) \quad \text { and } \quad(a, b) \cdot(c, d)=(a c-b d, b c+a d)
$$

where the operations on the right sides of the equal signs are the arithmetic in \mathbf{Z}_{3}. Use the exact same formulas to define "addition" and "multiplication" operations on $G=\mathbf{Z}_{5} \times \mathbf{Z}_{5}$. One of F and G is a field, and the other is not. Which is which, and why?

