M365C (Rusin) HW3 – due Thursday, Sept 19 2019

1. Compute
$$\inf(S)$$
 and $\sup(S)$ where $S = \left\{ \frac{1}{n+1} - \frac{1}{m+1} : m, n \in \mathbb{N} \right\}$

2. Define a (total) order on the complex numbers in the following way: we will say a + bi < c + di iff a < c or (a = c and b < d). Does this make **C** into an ordered field?

3. Show that if $f: X \to Y$ and $g: Y \to Z$ are injections then $g \circ f: X \to Z$ is also an injection.

4. Give an example to show that a union of countable sets need not be countable. (Obviously your example must involve infinitely many sets.)

5. Show that
$$\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n} \right) = \{0\}$$

6. Let X = C[0, 1], the set of continuous functions $f : [0, 1] \to \mathbf{R}$. For f and g in X define $d(f,g) = \int_0^1 |f(x) - g(x)| \, dx$. Show that d defines a metric on X. Which of these two functions is closer to the identity function f(x) = x: $g(x) = x^2$ or h(x) = 1/2 (constant)?

7. Let $X = \mathbf{Z}$ and for two different $x, y \in \mathbf{Z}$ define $d(x, y) = 2^{-r}$, where 2^r is the largest power of 2 that divides x - y. (When x = y we define d(x, x) = 0.) Is d a metric on \mathbf{Z} ?

8. Prove the following about all metric spaces X: if x and y are distinct elements of X then there are neighborhoods $N_r(x)$ and $N_s(y)$ around them which are disjoint.