1. Compute $\inf (S)$ and $\sup (S)$ where $S=\left\{\frac{1}{n+1}-\frac{1}{m+1}: m, n \in \mathbf{N}\right\}$
2. Define a (total) order on the complex numbers in the following way: we will say $a+b i<c+d i$ iff $a<c$ or $(a=c$ and $b<d)$. Does this make \mathbf{C} into an ordered field?
3. Show that if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are injections then $g \circ f: X \rightarrow Z$ is also an injection.
4. Give an example to show that a union of countable sets need not be countable. (Obviously your example must involve infinitely many sets.)
5. Show that $\bigcap_{n=1}^{\infty}\left(-\frac{1}{n}, \frac{1}{n}\right)=\{0\}$
6. Let $X=C[0,1]$, the set of continuous functions $f:[0,1] \rightarrow \mathbf{R}$. For f and g in X define $d(f, g)=\int_{0}^{1}|f(x)-g(x)| d x$. Show that d defines a metric on X. Which of these two functions is closer to the identity function $f(x)=x: g(x)=x^{2}$ or $h(x)=1 / 2$ (constant)?
7. Let $X=\mathbf{Z}$ and for two different $x, y \in \mathbf{Z}$ define $d(x, y)=2^{-r}$, where 2^{r} is the largest power of 2 that divides $x-y$. (When $x=y$ we define $d(x, x)=0$.) Is d a metric on \mathbf{Z} ?
8. Prove the following about all metric spaces X : if x and y are distinct elements of X then there are neighborhoods $N_{r}(x)$ and $N_{s}(y)$ around them which are disjoint.
