- 1. Find two subsets A, B of \mathbf{R} with $A \cap B = \emptyset$ but $\bar{A} \cap \bar{B} \neq \emptyset$.
- 2. Notice that the definition of what makes a set open depends on the metric used. Thus if we have two different metrics on a set, some of its subsets can be open in one metric but not the other. For example, we could use the $discrete \ metric$ on \mathbf{R} , i.e.

$$d(x, y) = 1$$
 whenever $x \neq y$,

instead of the usual metric. What subsets of **R** are open when using the discrete metric?

3. The taxicab metric on \mathbb{R}^2 is defined by

$$d((a,b), (c,d)) = d(a,c) + d(b,d)$$

Show that a subset of \mathbb{R}^2 is open under the taxicab metric iff it is open under the usual (Euclidean) metric. (We say two metrics on a set X are "equivalent" when they declare the same subsets of X as being open.)

4. Suppose X is a metric space with metric d. If $x \in X$ and $A \subseteq X$ then we define

$$d(x, A) = \inf\{d(x, a) \mid a \in A\}$$

(a) Show that if y is another point of X that

$$d(y, A) \le d(x, A) + d(x, y)$$

- (b) Under what conditions will d(x, A) = 0?
- 5. Show that if A and B are disjoint closed subsets of any metric space, then there are open sets U and V with $A \subseteq U$ and $B \subseteq V$ and $U \cap V = \emptyset$. (Hint: use the preceding problem.)
- 6. Suppose A is any subset of **R**, and let $\{O_{\gamma}|\gamma\in\Gamma\}$ be a collection of open sets with $A\subseteq\bigcup_{\gamma\in\Gamma}O_{\gamma}$. (That is these open sets form an *open cover* of A.) Show that there is a

countable subset $\Gamma' \subseteq \Gamma$ of this collection of open sets which still covers A. (This is called the *Lindelöf Property*.)

(Hint: For each $a \in A$, pick an O_{γ} that contains it. If A is countable, we're done. Otherwise, for each such a, pick an interval (p,q) around a that is contained in O_{γ} and has rational endpoints p and q. (Why is this possible?) Some of the intervals (p,q) will be picked for multiple points a. (Why?) For each such (p,q), pick one of the O_{γ} that contain it. Let Γ' be the collection of these γ s. Why is this a countable collection and why does it still cover A?)