1. This question continues the investigations of Problem 2 on HW7.

If $\left\{f_{n}(x)\right\}$ is a sequence of functions $f_{n}: X \rightarrow \mathbf{R}$ with the same domain and codomain, we say the sequence converges pointwise to $f: X \rightarrow Y$ if for every $x \in X$, the numbers $\left\{f_{n}(x)\right\}$ converge to the number $f(x)$. (To understand this, we of course need the metric in \mathbf{R} but X doesn't even have to be a metric space, just a set; and we don't need to discuss any sort of "distance between functions".)

Now, there is also the concept of uniform convergence. We say that a sequence of functions $f_{n}: X \rightarrow \mathbf{R}$ converges uniformly to $f: X \rightarrow \mathbf{R}$ if:

$$
\forall \epsilon>0 \exists N \in \mathbf{Z} \forall x \in X \forall n>N \text { we have }\left|f_{n}(x)-f(x)\right|<\epsilon
$$

(The only difference between this and pointwise convergence is that now the phrase "there is an integer N such that" comes before the phrase "for every $x \in X$ ".)

Show that $\left\{f_{n}\right\}$ converges uniformly to f if and only if $d_{\infty}\left(f_{n}, f\right)$ converges to 0 . You may assume that $X=[0,1]$ if you like, so that you are proving that uniform convergence is the same as convergence in the metric space $\left(C^{0}[0,1], d_{\infty}\right)$.
2. For any function $f: \mathbf{R} \rightarrow \mathbf{R}$ and any $a \in \mathbf{R}$ define

$$
f^{*}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a-h)}{h}
$$

(a) If f is differentiable at a, evaluate $f^{*}(a)$.
(b) If $f^{*}(a)$ exists, must f be differentiable at a ?
3. Suppose

$$
f(x)= \begin{cases}e^{-1 / x} & \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

Show that f is differentiable at $x=0$ and compute $f^{\prime}(0)$.
Bonus: This will mean that $g(x):=f^{\prime}(x)$ is defined for all real x. Is g differentiable at 0 ?
4. We say that a function $f: \mathbf{R} \rightarrow \mathbf{R}$ is increasing on a subset S of \mathbf{R} if:

$$
\text { for all } x, y \text { in } S \text {, if } x<y \text { then } f(x)<f(y)
$$

(a) Prove that if f is differentiable on an interval (a, b) then f is increasing on (a, b) iff $f^{\prime}(x)>0$ for all $x \in(a, b)$.
(b) Is $f(x)=1 / x$ increasing on $S=\mathbf{R}-\{0\}$?
5. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is differentiable at every point $x \in \mathbf{R}$ and moreover that for each $x,\left|f^{\prime}(x)\right|<5$. Show that f is uniformly continuous on \mathbf{R}.

