M365C (Rusin) HW8 – due Thursday, Oct 31 2019

1. This question continues the investigations of Problem 2 on HW7.

If $\{f_n(x)\}$ is a sequence of functions $f_n : X \to \mathbf{R}$ with the same domain and codomain, we say the sequence *converges pointwise* to $f : X \to Y$ if for every $x \in X$, the numbers $\{f_n(x)\}$ converge to the number f(x). (To understand this, we of course need the metric in \mathbf{R} but X doesn't even have to be a metric space, just a set; and we don't need to discuss any sort of "distance between functions".)

Now, there is also the concept of *uniform convergence*. We say that a sequence of functions $f_n : X \to \mathbf{R}$ converges uniformly to $f : X \to \mathbf{R}$ if:

$$\forall \epsilon > 0 \ \exists N \in \mathbf{Z} \ \forall x \in X \ \forall n > N$$
we have $|f_n(x) - f(x)| < \epsilon$

(The only difference between this and pointwise convergence is that now the phrase "there is an integer N such that" comes *before* the phrase "for every $x \in X$ ".)

Show that $\{f_n\}$ converges uniformly to f if and only if $d_{\infty}(f_n, f)$ converges to 0. You may assume that X = [0, 1] if you like, so that you are proving that uniform convergence is the same as convergence in the metric space $(C^0[0, 1], d_{\infty})$.

2. For any function $f : \mathbf{R} \to \mathbf{R}$ and any $a \in \mathbf{R}$ define

$$f^*(a) = \lim_{h \to 0} \frac{f(a+h) - f(a-h)}{h}$$

- (a) If f is differentiable at a, evaluate $f^*(a)$.
- (b) If $f^*(a)$ exists, must f be differentiable at a?

3. Suppose

$$f(x) = \begin{cases} e^{-1/x} & \text{if } x > 0\\ 0 & \text{if } x \le 0 \end{cases}$$

Show that f is differentiable at x = 0 and compute f'(0).

Bonus: This will mean that g(x) := f'(x) is defined for all real x. Is g differentiable at 0?

4. We say that a function $f : \mathbf{R} \to \mathbf{R}$ is *increasing on* a subset S of **R** if:

for all
$$x, y$$
 in S , if $x < y$ then $f(x) < f(y)$

(a) Prove that if f is differentiable on an interval (a, b) then f is increasing on (a, b) iff f'(x) > 0 for all $x \in (a, b)$.

(b) Is f(x) = 1/x increasing on $S = \mathbf{R} - \{0\}$?

5. Suppose $f : \mathbf{R} \to \mathbf{R}$ is differentiable at every point $x \in \mathbf{R}$ and moreover that for each x, |f'(x)| < 5. Show that f is uniformly continuous on \mathbf{R} .