
M365C (Rusin) HW9 – due TEST DAY, Thursday, Nov 7 2019
By class acclamation it was decided that this HW will be graded but the grade will

only be used to replace your lowest HW grade so far (so it is in effect optional).

1. Suppose fn : R → R is a sequence of uniformly continuous functions, and that the
sequence converges uniformly to a function f : R → R. Show that f is also uniformly
continuous.

2. Find an open cover of the set Q ∩ [0, 1] which has no finite subcover.

3. Show that the composite of two increasing functions is increasing. What can you say
about the composite of two decreasing functions?

4. If f is a continuous function on [a, b] then you may recall in Calculus that we refer to
the quantity

M =
1

|b− a|

∫ b

z

f(x) dx

as the average value (or mean value) of f on [a, b]. Show that this mean value M is actually
the value of the function f at some point in the interval [a, b]. (In layman’s terms, if you
can drive more than 60 miles in less than an hour, then you must at some point have
exceeded the 60mph speed limit!)

5. Use Taylor Series to show that
∞∑

n=1

(−1)n−1/n = ln(2)

6. You may recall Newton’s Method (for solving equations f(x) = 0) from your Calculus
class: you were told that you should find an approximation x0 to the solution, and then to
iteratively improve your approximation by constructing a sequence {xn} of real numbers
using the recurrence relation

xn+1 = xn −
f(xn)

f ′(xn)

You were probably told this sequence would “usually” converge to a solution to the equation
f(x) = 0. Let’s discover some features of this algorithm.

(a) Show that this method fails to find a solution to the equation f(x) = 0 if f(x) =
x1/3 and x0 = 1. (So: clearly we need to add some hypotheses if we hope to prove Newton’s
Method converges to a solution! What hypotheses will be enough?)

(b) Assume f is continuous on an interval (a, b) and has f(a) < 0 and f(b) > 0. Use
the Intermediate Value Theorem (Theorem 4.23) to show there exists at least one point
c ∈ (a, b) where f(c) = 0.

(c) Assume also that f is differentiable on (a, b) and that f ′(x) > 0 for all x ∈ (a, b).
Show that this c is the only solution to f(x) = 0 in this interval.



(d) Assume also that f is twice differentiable on (a, b). Show for every x ∈ (a, b) there
are points y, z ∈ (a, b) where

f(x) = f ′(c)(x− c) + f ′′(y)/2(x− c)2

f ′(x) = f ′(c) + f ′′(z)(x− c)

(e) Assume also that there are positive numbers M and N such that |f ′′(x)| ≤M and
|f ′(x)| ≥ N > 0 for every x ∈ (a, b). Conclude that for x ∈ (a, b), |x − c − f(x)/f ′(x)| ≤
(3M/2N)(x− c)2

(f) Conclude that if all these conditions are met then there is a constant K such that
whenever xn ∈ (a, b) we have |xn+1 − c| ≤ K|xn − c|2.

You saw a similar conclusion in HW5 (problem 5): this inequality may be stated
en+1 ≤ e2n where en = K|xn − c|. By induction we see en ≤ (e0)(2

n) which will make the
en decrease to zero very rapidly (we say we have “quadratic convergence” and numerically
we see that the number of decimal digits that xn shares with c will roughly double with
every iteration) as long as our first approximation is good enough: |x0 − c| < 1/K. Of
course in order to carry out the induction we need some further constraints to ensure that
xn+1 remains inside the interval (a, b) where all the assumptions apply, but again that will
be true assuming x0 is sufficiently close to c.


