M365C (Rusin) TEST 1 — Tuesday, Oct 8 2019 Each question is worth 16 points. You will also get 4 points for writing your name and EID:

1. (a) Prove the following: for all $a, b \in \mathbf{R}$ with a < b there exists a rational multiple of $\sqrt{2}$ between a and b (that is, a number of the form $c\sqrt{2}$ with $c \in \mathbf{Q}$).

(b) Give an example of a subset of \mathbf{R} which is neither open nor closed nor bounded nor compact (and explain why it fails to have each of those properties).

2. Show that the set of all *finite* sets of natural numbers is countable. (Hint: every finite set of natural numbers has a largest element.)

3. In Homework 3 we defined a (total) order on the set of complex numbers in the following way: we said a + bi < c + di iff (a < c) or (a = c and b < d). Find a subset of the complex numbers which has upper bounds in this sense, but has no *least* upper bound.

4. Suppose X is a metric space with metric d, and suppose $x_0 \in X$. Let

$$C = \{ x \in X \, | \, d(x, x_0) \le 1 \}.$$

Show that C is a closed set. (Hint: complements)

Extra Credit: in the special case of $X = \mathbf{Z}$ with the 2-adic metric d, with $x_0 = 0$, show that C is also open!

5. Show that this sequence converges, and determine its limit:

2,
$$2 + \frac{1}{2}$$
, $2 + \frac{1}{2 + \frac{1}{2}}$, $2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}$, ...

(Hint: to prove convergence, show that the two subsequences consisting of every other term are monotomic.)

6. I asked my calculus students to decide whether the series

$$\sum_{n\geq 1} \frac{(n!)^2}{(2n)!} \left(\frac{2}{5}\right)^n$$

converges. Sadly, some of them don't seem to know the difference between that series and the product

$$\left(\sum_{n\geq 1}\frac{(n!)^2}{(2n)!}\right)\cdot\left(\sum_{n\geq 1}\left(\frac{2}{5}\right)^n\right)$$

But that prompts the following exercise: show that if $\sum a_n$ and $\sum b_n$ are both convergent series of *positive* real numbers, then the series $\sum (a_n b_n)$ converges.