M365C (Rusin) TEST 1 — Tuesday, Oct 82019
Each question is worth 16 points. You will also get 4 points for writing your name and EID:

1. (a) Prove the following: for all $a, b \in \mathbf{R}$ with $a<b$ there exists a rational multiple of $\sqrt{2}$ between a and b (that is, a number of the form $c \sqrt{2}$ with $c \in \mathbf{Q}$).
(b) Give an example of a subset of \mathbf{R} which is neither open nor closed nor bounded nor compact (and explain why it fails to have each of those properties).
2. Show that the set of all finite sets of natural numbers is countable. (Hint: every finite set of natural numbers has a largest element.)
3. In Homework 3 we defined a (total) order on the set of complex numbers in the following way: we said $a+b i<c+d i$ iff $(a<c)$ or $(a=c$ and $b<d)$. Find a subset of the complex numbers which has upper bounds in this sense, but has no least upper bound.
4. Suppose X is a metric space with metric d, and suppose $x_{0} \in X$. Let

$$
C=\left\{x \in X \mid d\left(x, x_{0}\right) \leq 1\right\} .
$$

Show that C is a closed set. (Hint: complements)
Extra Credit: in the special case of $X=\mathbf{Z}$ with the 2-adic metric d, with $x_{0}=0$, show that C is also open!
5. Show that this sequence converges, and determine its limit:

$$
2,2+\frac{1}{2}, 2+\frac{1}{2+\frac{1}{2}}, 2+\frac{1}{2+\frac{1}{2+\frac{1}{2}}}, \cdots
$$

(Hint: to prove convergence, show that the two subsequences consisting of every other term are monotomic.)
6. I asked my calculus students to decide whether the series

$$
\sum_{n \geq 1} \frac{(n!)^{2}}{(2 n)!}\left(\frac{2}{5}\right)^{n}
$$

converges. Sadly, some of them don't seem to know the difference between that series and the product

$$
\left(\sum_{n \geq 1} \frac{(n!)^{2}}{(2 n)!}\right) \cdot\left(\sum_{n \geq 1}\left(\frac{2}{5}\right)^{n}\right)
$$

But that prompts the following exercise: show that if $\sum a_{n}$ and $\sum b_{n}$ are both convergent series of positive real numbers, then the series $\sum\left(a_{n} b_{n}\right)$ converges.

