1. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is increasing on the intervals (a, c) and (b, d), where $a<b<c<d$. Show that f is increasing on (a, d).

ANSWER: I must show that if $x, y \in(a, d)$ and $x<y$ then $f(x)<f(y)$. First pick a point in the overlap between the intervals, e.g. the point $e=(b+c) / 2$.

1. If $y \leq e$ then both x and y lie in (a, c) so by assumption $f(x)<f(y)$.
2. If $x \geq e$ then similarly $f(x)<f(y)$ because f is increasing on (b, d).
3. If neither of those is true, then $x<e<y$. But in that case we use the fact that f is increasing on the first interval to show $f(x)<f(e)$ and then use the fact that f is increasing on the second interval to show that $f(e)<f(y)$. Taken together these prove $f(x)<f(y)$.
4. A function $f: \mathbf{R} \rightarrow \mathbf{R}$ is said to satisfy the Lipschitz condition if there is a constant C such that for every x and y in $\mathbf{R},|f(x)-f(y)| \leq C|x-y|$. Show that a function that satisfies the Lipschitz condition is uniformly continuous on its domain.

ANSWER: Given an $\epsilon>0$ let $\delta=\epsilon / C$. Then whenever $x, y \in \mathbf{R}$ satisfy $|x-y|<\delta$, we will have $|f(x)-f(y)| \leq C|x-y|<C \delta=\epsilon$.

This argument does not apply if $C=0$, but if $C=0$ then the Lipschitz condition implies that f is a constant function, which is clearly uniformly continuous. (It is perhaps also worth noting that no function can satisfy a Lipschitz condition with $C<0$ because absolute values are always non-negative.)

Extra Credit: Suppose instead that there is a constant C such that for every x and y in \mathbf{R} we have $|f(x)-f(y)| \leq C|x-y|^{2}$. Show that f is constant.

ANSWER: Given any two points $x, y \in \mathbf{R}$ with, say, $x<y$, consider the $n+1$ equally-spaced points $x_{i}=x+i(y-x) / n$ (so $x_{0}=x$ and $x_{n}=y$. By assumption we have $\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right| \leq C\left|x_{i}-x_{i-1}\right|^{2}=C(y-x)^{2} / n^{2}$ for every i. Adding these and using the triangle inequality shows $|f(y)-f(x)|<n \cdot C(y-x)^{2} / n^{2}=C(y-x)^{2} \cdot(1 / n)$ This is true for every $n \in \mathbf{N}$ so the actual value of $|f(y)-f(x)|$ must be no larger than the infimum of all these numbers, which is zero, so $f(x)=f(y)$. Hence f is constant.

Alternatively you could use the given property to show that for every $x \in \mathbf{R}$, the derivative $f^{\prime}(x)$ exists and equals zero. But the Mean Value Theorem implies that a function whose derivative is everywhere zero must be constant.
3. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is a continuous function with the property that for all $x, y \in \mathbf{R}$ we have $f(x-y)=f(x)-f(y)$. Suppose also that $f(1)=7$. Show that $f(x)=7 x$ for every x. (Hint: Choose combinations of x and y that allow you to determine these values: $f(0), f(-1), f(2), f(694), f\left(\frac{1}{2}\right), f(3.14)$, and $f(\pi)$. Generalize what you learn from these examples.)

ANSWER: With $x=y=1$ we conclude $f(0)=0$. Then with $x=0$ we deduce $f(-y)=-f(y)$ for every real y. In particular $f(x+y)=f(x-(-y))=f(x)-f(-y)=$ $f(x)+f(y)$ for every x and y. (One says such an f is an additive function.) By induction
we prove $f(n x)=n f(x)$ for every real x and every $n \in \mathbf{N}$: it's already proved when $n=0$ and the inductive step is simply

$$
f((n+1) x)=f(n x+x)=f(n x)+f(x)=n f(x)+f(x)=(n+1) f(x)
$$

In particular taking $x=1$ shows $f(m)=7 m$ for every $m \in \mathbf{N}$. We can also take $x=y / n$ for any real y to conclude $f(y)=n f(y / n)$ so that $f\left(\frac{1}{n} y\right)=\frac{1}{n} f(y)$. So if $y=m \in \mathbf{N}$ we have $f(m / n)=f(m) / n=7 m / n$. Thus $f(q)=7 q$ for every positive rational q, as well as for $q=0$ and for negative rationals (since $f(-x)=-f(x)$).

Finally (finally!) we use continuity: every $x \in \mathbf{R}$ is a limit of rational numbers x_{n}, so by continuity $f(x)=f\left(\lim x_{n}\right)=\lim f\left(x_{n}\right)=\lim 7 x_{n}=7 x$. Thus $f(x)=7 x$ for all $x \in \mathbf{R}$. (You may wish to remember this principle: if f and g are two continuous functions that agree on all of \mathbf{Q} then they are equal everywhere. Simply note $h=f-g$ is also continuous and the closed set $h^{-1}(0)$ includes all of \mathbf{Q} so it includes $\overline{\mathbf{Q}}=\mathbf{R}$.)

In this problem you MUST use continuity; you MUST NOT use differentiability (since we are not told f is differentiable). To see that continuity is required, view \mathbf{R} as an (infinitedimensional) vector space over \mathbf{Q} and pick a basis for \mathbf{R} which includes 1. Then we may define a \mathbf{Q}-linear map $\mathbf{R} \rightarrow \mathbf{R}$ by simply stating where the basis elements are to be sent. As long as 1 is sent to 7 , then the conditions of the problem are met (other than continuity); we could for example send all the other basis elements to 0 so that f is a projection from \mathbf{R} to \mathbf{Q} which sends every rational x to $7 x$ but sends most other real numbers to 0 !
4. Suppose that $f, g: \mathbf{R} \rightarrow \mathbf{R}$ are two differentiable functions with $f^{\prime}(x)>g^{\prime}(x)$ for all $x>0$. Show that if $f(0)=g(0)$ then $f(x)>g(x)$ for all $x>0$.

ANSWER: Let $h(x)=f(x)-g(x)$; then h is differentiable and $h^{\prime}(x)>0$ for all x. We have previously shown that this means h is increasing (by the Mean Value Theorem), which means $h(x)>h(0)=0$ for all $x>0$. Hence $f(x)>g(x)$ for all these x.

Note that if you apply MVT to f and g separately, you can only assert that there are two points c_{1} and c_{2} where the derivatives of f and g match their secant slopes; there's no reason to think $c_{1}=c_{2}$, so you can't use the fact that $f^{\prime}>g^{\prime}$ pointwise. Also note that there is no assumption that f^{\prime} and g^{\prime} are positive; for example the claim applies to $f(x)=x^{2} \sin (1 / x)$ and $g(x)=f(x)-f(x)^{2}$. In particular f and g need not be increasing nor decreasing. And no, the generalized MVT found in the text is not useful in this problem.
5. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is twice differentiable, and suppose that at the point $a \in \mathbf{R}$ we have $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)>0$. Show that f attains a local minimum at the point a, that is, show that there is a neighborhood N around a with the feature that for every $x \in N$ we have $f(x) \geq f(a)$. You may assume that the second derivative of f is continuous.

ANSWER: It's not quite enough to know that $f^{\prime \prime}(a)>0$; it's better to know that $f^{\prime \prime}$ is positive in a neighborhood of a, but that's a consequence of the continuity of $f^{\prime \prime}$, as we have seen in multiple other problems. (To be precise: use the definition of continuity of $f^{\prime \prime}$ at the point a, with $\epsilon=f^{\prime \prime}(a)$; then there is a δ such for all x in $(a-\delta, a+\delta)$ we have $f^{\prime \prime}(x)>f^{\prime \prime}(a)-\epsilon=0$.)

Then, for all x in this neighborhood, we may invoke the Remainder Theorem for Taylor Series:

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(c)}{2}(x-a)^{2}
$$

for some c between a and x. That means c will also be in this neighborhood, so that $f^{\prime \prime}(c)>0$ as in the previous paragraph. Since $(x-a)^{2}$ is obviously also positive (for $x \neq a)$ and $f^{\prime}(a)=0$ by assumption, this leaves us with $f(x) \geq f(a)$.

It turns out the result is true without the assumption that $f^{\prime \prime}$ be continuous. I invite you to consider whether the function

$$
f(x)= \begin{cases}3 x^{4} \sin (1 / x)+x^{2} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

has a local minimum at the origin. You can show that $f^{\prime \prime}(0)=2$ from the definition; and separately you can compute that $f^{\prime \prime}(x)=\left(36 x^{2}-3\right) \sin (1 / x)-18 x \cos (1 / x)+2$ if $x \neq 0$. Put together, these computations show that this $f^{\prime \prime}$ is not continuous at 0 . Well? Is there a region around 0 where the function stays positive? Do observe that if $x=1 /(\pi / 2+2 n \pi)$ for $n=1,2,3, \ldots$, then $f^{\prime \prime}(x)=36 x^{2}-1<0$, that is, there is no neighborhood around 0 where $f^{\prime \prime}$ stays positive!

So instead we may proceed as follows. The definition of $f^{\prime \prime}(a)$ is $\lim _{x \rightarrow a}\left(f^{\prime}(x)-\right.$ $\left.f^{\prime}(a)\right) /(x-a)$. Apply the definition of a limit, with $\epsilon=f^{\prime \prime}(a) / 2$; then there is a neighborhood $N=(a-\delta, a+\delta)$ such that for all x in this neighborhood we have $\left(f^{\prime}(x)-f^{\prime}(a)\right) /(x-a)>f^{\prime \prime}(a)-\epsilon>f(a) / 2>0$. Then in particular for all $x>a$ in this neighborhood, $f^{\prime}(x)-f^{\prime}(a)=f^{\prime}(x)$ must be positive; similarly for all $x<a$ in $N, f^{\prime}(x)-f^{\prime}(a)=f^{\prime}(x)$ must be negative (because the denominator $x-a$ is). Then for any $x \in N$ we may apply the Mean Value Theorem: $f(x)-f(a)=f^{\prime}(c)(x-a)$ for some c between a and x; for $x>a$ both $f^{\prime}(c)$ and $x-a$ are positive and for $x<a$ both are negative, but either way the product is positive so $f(x)>f(a)$. So indeed f attains a local minimum at a.

It's fine to speak of a function (like this f^{\prime}) being increasing in a neighborhood of a point, if you can identify this neighborhood somehow. If you can't, and you speak only of a function "increasing at the point a " or something, then I don't know what you're talking about and I'm not sure you do either.

