Some examples of Trig Integrals

The first example is this: how to compute the “trigonometric integral”

/sec(m) dx

using the “recipe” I proposed to you. You can find an anti-derivative in books or online
but ... how’d they do that?

So let’s use the steps I proposed for you. First reduce to sines and cosines: sec(x) =
(sin(z))°(cos(x)) ™!, and precisely one exponent is odd, so we are advised to use the substi-
tution v = sin(z). Then du = cos(x) dx, so dx = (1/ cos(x)) du. (The remaining corner of
the little “diamond” would say = = arcsin(u) but we don’t need that today.) Substituting
in this expression for dx, our integral uses only even powers of the cosine, which is what’s
supposed to happen; that allows us to use the Pythagorean identity, right on schedule:

/Sec(:r;) dr = /(0082(56))_1 du = /(1 ~ sin®(z)) "t du = /(1 —w?)"ldu

As advertised, our integral is now a rational function of w.

So now we know to turn to Partial Fractions. No long division is necessary and the
denominator factors easily as (1 — u)(1 + u), so we expect the integrand to have the form
A n B
S l-u 14w

(1—u?)~!

Clear denominators and you can determine the coefficients to be A = B = 1/2. So we may
continue our transformations of the original integral:

/Sec@)dx:/l_luQ du:%/<1iu+1j—u) du= 5 (= (|1~ ul) + In(|1 + u])

Plus C, of course.
Having finished the Calculus, we can still use some algebra: we might first rewrite

this as
— [ In
2 1—u

and then substitute back to get the original variable back:

(i)

There’s nothing wrong with this antiderivative, but by tradition people rewrite the inner
fraction by multiplying top and bottom by 1+sin(z); that makes the input to the logarithm
function become the square of |(1+4sin(z))/ cos(x)| = | sec(z)+tan(x)|. So using a property
of logarithms, this gives the answer in the usual form,

/sec(x) dx = In (|sec(x) + tan(z)|) + C

which you should check by differentiating the right-hand side.



My second example is
/2 sin(z) cos(z) dx

because you can use any of the three substitutions here — m odd suggests using u = cos(z),
n odd suggests using u = sin(x), and m + n even suggests using u = tan(z). In the
last case my recipe for you would rewrite dz = (1 + u?)~!du, cos(x) = 1/sec(x), and
sin(z) = u/ sec(x), which would write the integral as

/2Sin(x) cos(z) dr = /2u(1 +u?) "/ sec?(x) du = /Qu(l +u?)7 /(1 + tan®(z)) du
= /Zu(l +u?) "% du

which, as promised, is a rational function of wu.

So now you might think to use Partial Fractions, but in fact this rational function is
already in the desired form! (You might be expecting additional terms, but all those other
“undetermined coefficients” will turn out to be zero.) All you need do here is a simple
substitution: let v = 1 + u? so that dv = 2udu and our integral is [v™2dv = —1/v =
—1/(1 +u?) = —1/(1 + tan?(x)) = —1/sec?(x) = — cos?(x).

This is exactly the answer you would have gotten if you had started with the substitu-
tion u = cos(x). If you had started with the substitution v = sin(x), you would likely have
ended with the answer that the antiderivative is + sin®(z), which certainly looks different
— after all, it’s positive for every z, and the previous answer is negative for every z ! Can
both answers be right? Hmmm.

And what about using the identity sin(2z) = 2sin(x) cos(z)? Then the original inte-
gral suggests using the substitution v = 2x to get an antiderivative equal to —% cos(2z).
How can these all be the right answer? ...



