Several students have asked me how one can classify the critical points that are found
using Lagrange Multipliers, that is, how does one know that a critical point is a (local)
minimum, or maximum, or saddle point, or something else. That’s an excellent question;
I'm glad you thought to ask. But it does not have an easy answer. There are several ways
you can think about it. I'd like to show you some of them — they will encourage you to
tie together a lot of separate ideas we have already developed!

Allow me to illustrate with one of the problems that appear in the homework:
Minimize f(z,y,z) = 42 4 3y* + 22 subject to 22+ 3y +2=9

The Lagrange Multipliers Theorem tells you that if f attains a (local) minimum or maxi-
mum at the point P, then the gradient of f at the point P will be parallel to the gradient
of g(z,y,2) = 2x + 3y + z — 9 at the point P. That means the coordinates of any such
point will satisfy

8xr =2\
6y = 3\
4z = A\
20 +3y+2=9

for some real number A\. That’s a system of 4 (linear!) equations in 4 unknowns, which I
know you can solve; the only solution is the point

r=1 y=2, z=1, (and A=4)

But what happens at this point? Does f attain a minimum there? The short answer
is, yes it does, but there’s no single method that will easily prove this to you in this and
every similar case. You sometimes have to be creative in your analysis.

1 For example, here’s a completely algebraic way to answer this question. Consider
the function
h(z,y,2) =4(x —1)* +3(y —2)* +2(z — 1)* + 18

I will let you expand this if you want; it’s the sum of seven terms, three of which sum to
the original function f and the other four sum to exactly 8¢ + 12y + 4z — 36 = 4g, that is,

f(x,y,2) = h(x,y,2) +4g(z,y, 2)

The significance of this equation is that as long as you stay on the set where g = 0, this
function h will take exactly the same values as the original function f. On the other hand,
it is clear from the presentation of h as a sum of squares that it will always take on values
that are larger than 18, except right at our critical point, where h(P) = f(P) = 18. This
proves that f achieves its minimum value at P, among all points where g = 0.

That was a little bit of magic, though: it required that I be able to add a multiple of g
to f so as to get a function which is positive on all of Euclidean space. I'm not sure when
that’s possible, and I don’t have an algorithm that would help you find such a multiplier
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when it s possible, although it is not an accident that the multiplier of 4 in the previous
paragraph is the same as the value of A at the critical point. (It is, sort of, true that you
will recognize an always-positive function in the same way I just did, namely, recognizing
it as a sum of squares. This is a subtle bit of research mathematics; look up Hilbert’s
Seventeenth Problem.)

2 A second idea is also computational, and it builds on the following idea. The
condition that there be a critical point at P in this constrained problem may be described
in this way: P is a point that makes all the partial derivatives of F' = f — A\g vanish —
including the partial derivative with respect to A. (Observe that F is a function of four
variables, namely x,y, z, A, so setting all the partials to zero gives you the four equations
in four unknowns that you need.) If you take this perspective, then the condition to have
a minimum is easy to describe: it is that the second derivative (“Hessian”) matrix must
indicate that F has a minimum at this point in R*.

In our example, F' = 422 + 3y + 222 — A\(2z + 3y + z — 9) has gradient

(8 — 2\, 6y — 3\, 22—\, —(2x + 3y + 2))

and hence the Hessian matrix is

8 0O 0 =2
0 6 0 -3
0 0 2 -1

-2 -3 -1 0

We have hardly mentioned second derivatives except for functions R?> — R but you can see
they will also be symmetric matrices. In order to test that they reveal a local minimum,
one must check all the smaller square matrices that include the upper left corner:

8 0O 0 =2

(8) 8 0 g g 8 0 6 0 -3
’ 0 6/’ 0 0 2 ’ 0 0 2 -1
-2 -3 -1 0

The theorem about unconstrained optimization is that if all these matrices have pos-
itive determinants, then the function has a local minimum at the critical point; if they
alternate in sign starting with a negative, then there is a local maximum. Any other mix
of signs indicates some type of saddle point, and any determinant being zero suggests there
can be some kind of degeneracy.

Well, exactly the same kind of conclusion may be used in the case of a constrained
optimization problem, and in this example it proves that our original function f attains
a local minimum at P (compared to all the other points where ¢ = 0). That’s useful,
although it doesn’t actually prove that f attains an absolute minimum at P. Even in
the unconstrained case, the fact that a local minimum is the only critical point does not
guarantee that the function attains an absolute minimum there. An example is the function

flzy) =2 +y*(1 —2)?
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which attains a local minimum value of 0 at the origin and has no other critical points at
all, and yet f(4,0) = —11 < f(0,0) so the origin is clearly not a global minimum.

3 Another approach you could use to address constrained optimization problems is
to make them unconstrained, in the following sense. In our example, we are supposed to
consider only those points (z,y, z) which make g(z,y,z) = 0. This surface is easily seen
to be a plane, described implicitly. You can describe it explicitly too of course: it’s the
graph of

z2=9—-2x -3y

In other words, we use the equation g = 0 to solve for one variable in terms of the others.
Then we can substitute this into the description of f: let

folz,y) = 427 + 3y* + 2(9 — 2z — 3y)?

Then this f» is defined on all of R?, and we need only to minimize it; find the point p € R?
where f5 is minimized, then compute a z coordinate from the equation g = 0 as above, to
find the point P € R® where f will be minimized on the surface g = 0. Of course to find
p we simply compute the gradient of fo to get (8x — 8(9 — 2x — 3y), 6y — 12(9 — 2x — 3y))
which only vanishes at p = (1,2); then z =9 — 22z — 3y =1so P = (1,2,1) as before. But
in this perspective the problem is easier: we now know we can test the behaviour of this

24 24 Do
94 42), which indicates f; has a

local minimum at p, and hence f has a local minimum (among points with g = 0) at P.
Notice that this approach requires viewing the surface g = 0 as the graph of a function
z=9—2x—3y. You don’t really have to explicitly solve for z, you just need to know that
it can be done and you need to be able to compute 0z/0z and 0z/0y in order to locate
and then classify the critical points of fo. Guess what: this is why I gave you the Implicit
Function Theorem! It says that we can indeed do this near any point where dg/0z is not
zero (in our example, that’s everywhere), and it tells us that the gradient of z is exactly

a(iy) - (?) (mi?y))

But perhaps that observation is best saved for another day.

critical point by computing the Hessian of f5. I get (

4 Another option you might prefer, rather than trying to invent a second-derivative
test for constrained optimization, is to remember that in 1-variable calculus we also had
a first-derivative test to classify critical points. Clearly if a function increases to the left
of © = a and decreases to the right of x = a, then it has a local max at x = a. In the
same way, we could simpliy ask: does our function decrease as we move towards P from
any nearby point () that lies on the plane ¢ = 07 For that task we can use directional
derivatives: the rate at which f changes (instantaneously) as we from @ in the direction
v=P—-Qis D,f(Q) = Vf(Q) - v. In this particular example we can easily calculate
V f to be the vector-valued function V f(z,y, z) = (8x,6y,4z) and then evaluate it at this
nearby point Q = P — v. If we give names to the components of v, say v = (vy,v2,v3),
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then Vf(Q) = (8(1 —wv1),6(2—1v2),4(1 —v3)) and so we compute the directional derivative
as we head from ) to P with a dot product:

D, f(Q) = Vf(Q)-v=(8v; + 12vy + 4v3) — (8vF + 6v3 + 4v3)

BUT: remember that we are only comparing the values of f at points in the plane where
g = 0, so v will be a vector in that plane, i.e. it will be perpendicular to the normal
vector (2,3, 1) of the plane, which is exactly what we need to make the linear part of this
directional derivative vanish. Hence for such vectors v we will have D, f(Q) = —(8v7 +
6v3 + 4v3), which is clearly negative: so f will decrease as we move toward P within the
plane.

5 If you try to work out the pattern of the preceding paragraph for general functions
f and general constraints g, you soon get the idea to just use the initial terms of the Taylor
series of f near P. You know

V(P +0) & (P)+ VI(P) v+ 5ot £ (P)o

Apply this to vectors v that point along the surface g = 0, to see how f changes if you move
to other points in that surface. Doing so restricts you to vectors that are perpendicular
to Vg(P). If P is a point selected by the Lagrange Multipliers condition, then this will
mean v is also perpendicular to V f(P), so the linear term in this Taylor expansion is
exactly 0. So the analysis comes down to deciding whether the expression v f”(P)v is
positive or negative for such vectors v. In our particular case, this expression works out
to 8v? + 6v3 + 4v3, which is obviously positive for every vector v, whether it points along
the surface or not; thus f will increase if you move in any direction along the plane g = 0.
In a more general setting this might require a little more Linear Algebra (we are deciding
whether a quadratic form is positive-definite on a particular subspace) but I can give you
some pointers if you are interested.

6 One more idea is more geometric. If you use the Lagrange Multiplier Theorem, you
can isolate all candidates for where a function might attain a minimum or a maximum.
Separately, you might be able to use a different theorem that assures you that there IS a
minumum somewhere (and a maximum somewhere else). I gave you such a theorem: there
will always be a min and a max as long as f is continuous and the domain of options is
both “closed” and “bounded”. In our constrained optimzation problems, the domain is
always the set of points where g = 0; as long as ¢ is also continuous, this set will be closed
(i.e. it will include its boundaries). For example, our domain is that plane in R?; it doesn’t
even have any boundaries to include, so it’s a closed set by default.

Unfortunately the plane is not bounded, so we cannot use that theorem as it stands.
Nonetheless we can adapt it as follows. Recall that our f attained a fairly low value of
18 at our critical point P; I claim that the function f never attains a value lower than 18
once we are outside the ball of radius 3 centered at the origin. That’s kind of obvious: if
you're outside that ball, then z? 4+ y? 4+ 22 > 9, and so f = 422 + 3y? + 222 will be at
least as big as 222 + 2y? + 222, which in turn will have to be larger than 18, and hence
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not lower than the value of f at our P. So really it is sufficient to look at the points in
the plane which happen to lie inside the closed ball of radius 3. Those points will lie in a
disk (any plane meets any ball in a disk if it meets the ball at all), so now we are trying
to minimize f on a set which is closed and bounded too and hence from that theorem we
know f will attain a minimum somewhere in there. Lagrange Multipliers shows us there
is only one candidate point, so that must be where f attains an absolute minimum.

(Use this line of reasoning carefully. The same theorem shows that f must attain a
mazximum somewhere on the disk; the Lagrange Multiplier theorem says the maximum
must occur at a place where Vf and Vg are parallel, OR at a point where one of the
gradients does not exist, OR at point on the boundary of this disk. The only place where
the gradients line up is our critical point P where the minimum occurs; and there are no
points without a gradient. But we DO have to look at points on the circle that forms the
boundary of the disk, if we want to find the maximum of f. I won’t do it because although
that point gives the max of f on the disk, it does not give the max of f on the whole
plane: the inequalities I used in the last paragraph work against us when searching for a
max instead of a min.)

I’'m sure there are other ways to address the problem of characterizing what exactly
happens at a critical point in a constrained optimization problem, but I decided to highlight
these in order to (a) give you some tools you might want to reach for on a future problem,
and (b) to illustrate how everything else we’ve done up to this point can be used to our
advantage to make sense of what’s going on in one example!



