1. Let $A=\left(\begin{array}{ll}2 & -1 \\ 2 & -1\end{array}\right)$.
a) Find the eigenvalues and eigenvectors of A.
b) Compute A^{13421}. (No, you do NOT need a calculator for this!)
c) Compute e^{A}.
2. a) In \mathbb{R}^{3} with the standard inner product, apply the Gram-Schmidt process to convert the basis $\left\{(1,4,3)^{T},(2,3,4)^{T},(10,4,0)^{T}\right\}$ into an orthogonal basis.
b) Find the coordinates of the vector $\mathbf{v}=(1,-7,9)^{T}$ in the orthogonal basis you constructed in part (a).
3. Consider the system of difference equations $\mathbf{x}(n+1)=A \mathbf{x}(n)$, where $A=\left(\begin{array}{lll}-2 & 0 & 0 \\ -5 & 1 & 2 \\ -3 & 1 & 0\end{array}\right)$ and $\mathbf{x}(0)=\left(\begin{array}{l}1 \\ 4 \\ 1\end{array}\right)$.
a) Diagonalize A.
b) Find $\mathbf{x}(n)$ for all n. (You may express your answer as a linear combination of the eigenvectors of A, but the coefficients should be explicit.)
4. Consider the nonlinear system of differential equations:

$$
\frac{d x_{1}}{d t}=\ln \left(x_{1} x_{2}^{2}\right) \quad \frac{d x_{2}}{d t}=\ln \left(x_{1}^{2} x_{2}\right) .
$$

a) Find the fixed point (there is only one).
b) Find a LINEAR system of ODEs that approximates motion near the fixed point.
c) Find all the stable modes of this linear system. Then find all the unstable modes.
5. a) Find a least-squares solution to $A \mathbf{x}=\mathbf{b}$, where $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & -1\end{array}\right)$ and $\mathbf{b}=\left(\begin{array}{l}0 \\ 3 \\ 4 \\ 3\end{array}\right)$.
b) Find the equation of the best line through the points $(-1,3)^{T},(0,1)^{T}$, $(1,0)^{T}$, and $(2,-2)^{T}$.

