M346 Second Midterm Exam Solution, November 10, 2005

1. Let $A=\left(\begin{array}{ll}2 & -1 \\ 2 & -1\end{array}\right)$.
a) Find the eigenvalues and eigenvectors of A.

The determinant is zero, so 0 must be an eigenvalue. The trace is 1 , so the other eigenvalue must be 1. The eigenvectors are $(1,2)^{T}$ and $(1,1)^{T}$.
b) Compute A^{13421}. (No, you do NOT need a calculator for this!)
$A=P D P^{-1}$, where $P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$ and $D=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. So $A^{13421}=$ $P D^{13421} P^{-1}$. But $D^{13421}=D$, so this just equals $P D P^{-1}=A$.
c) Compute e^{A}.

$$
e^{A}=P e^{D} P^{-1}=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)\left(\begin{array}{cc}
e & 0 \\
00 & 1
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{ll}
2 e-1 & 1-e \\
2 e-2 & 2-e
\end{array}\right)
$$

2. a) In \mathbb{R}^{3} with the standard inner product, apply the Gram-Schmidt process to convert the basis $\left\{(1,4,3)^{T},(2,3,4)^{T},(10,4,0)^{T}\right\}$ into an orthogonal basis.
$\mathbf{y}_{1}=\mathbf{x}_{1}=(1,4,3)^{T}, \mathbf{y}_{2}=\mathbf{x}_{2}-\mathbf{y}_{1}=(1,-1,1)^{T}, \mathbf{y}_{3}=\mathbf{x}_{3}-\mathbf{y}_{1}-2 \mathbf{y}_{2}=$ $(7,2,-5)^{T}$.
b) Find the coordinates of the vector $\mathbf{v}=(1,-7,9)^{T}$ in the orthogonal basis you constructed in part (a).
$\left\langle\mathbf{y}_{1} \mid v\right\rangle=0,\left\langle\mathbf{y}_{2} \mid \mathbf{v}\right\rangle /\left\langle\mathbf{y}_{2} \mid \mathbf{y}_{2}\right\rangle=17 / 3$ and $\left\langle\mathbf{y}_{3} \mid \mathbf{v}\right\rangle /\left\langle\mathbf{y}_{3} \mid \mathbf{y}_{3}\right\rangle=-2 / 3$, so $\mathbf{v}=$ $(17 / 3) \mathbf{y}_{2}-(2 / 3) \mathbf{y}_{3}$.
3. Consider the system of difference equations $\mathbf{x}(n+1)=A \mathbf{x}(n)$, where $A=\left(\begin{array}{lll}-2 & 0 & 0 \\ -5 & 1 & 2 \\ -3 & 1 & 0\end{array}\right)$ and $\mathbf{x}(0)=\left(\begin{array}{l}1 \\ 4 \\ 1\end{array}\right)$.
a) Diagonalize A.

Eigenvalue $-2,2$ and -1 , with eigenvectors $(1,1,1)^{T},(0,2,1)^{T}$ and $(0,1,-2)^{T}$. Note that A is block triangular, and that the sum of the entries in each row is -2 .
b) Find $\mathbf{x}(n)$ for all n. (You may express your answer as a linear combination of the eigenvectors of A, but the coefficients should be explicit.)

Since $\mathbf{x}(0)=\mathbf{b}_{1}+\mathbf{b}_{2}+\mathbf{b}_{3}, \mathbf{x}(n)=(-2)^{n} \mathbf{b}_{1}+2^{n} \mathbf{b}_{2}+(-1)^{n} \mathbf{b}_{3}$.
4. Consider the nonlinear system of differential equations:

$$
\frac{d x_{1}}{d t}=\ln \left(x_{1} x_{2}^{2}\right)
$$

$$
\frac{d x_{2}}{d t}=\ln \left(x_{1}^{2} x_{2}\right)
$$

a) Find the fixed point (there is only one): The fixed point is $\mathbf{a}=(1,1)^{T}$.
b) Find a LINEAR system of ODEs that approximates motion near the fixed point.

Setting $\mathbf{y}=\mathbf{x}-(1,1)^{T}$, we have $d \mathbf{y} / d t \approx A \mathbf{y}$, where $A=\left.\left(\begin{array}{ll}1 / x_{1} & 2 / x_{2} \\ 2 / x_{1} & 1 / x_{2}\end{array}\right)\right|_{\mathbf{x}=\mathbf{a}}=$ $\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$.
c) Find all the stable modes of this linear system. Then find all the unstable modes.

The stable mode, with $\lambda=-2$, is $(1,-1)^{T}$. The unstable mode, with $\lambda=3$, is $(1,1)^{T}$.
5. a) Find a least-squares solution to $A \mathbf{x}=\mathbf{b}$, where $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & -1\end{array}\right)$ and $\mathbf{b}=\left(\begin{array}{l}0 \\ 3 \\ 4 \\ 3\end{array}\right)$.
$A^{T} A=\left(\begin{array}{lll}4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right)$ and $A^{T} \mathbf{b}=\left(\begin{array}{c}10 \\ -2 \\ -4\end{array}\right)$, so the solution to $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ is $\mathbf{x}=\left(\begin{array}{c}5 / 2 \\ -1 / 2 \\ -1\end{array}\right)$.
b) Find the equation of the best line through the points $(-1,3)^{T},(0,1)^{T}$, $(1,0)^{T}$, and $(2,-2)^{T}$.

If the equation for the best line is $y=c_{0}+c_{1} x$, then we are solving the least-squares system $\left(\begin{array}{cc}1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2\end{array}\right)\binom{c_{0}}{c_{1}}=\left(\begin{array}{c}3 \\ 1 \\ 0 \\ -2\end{array}\right)$. Then $A^{T} A=\left(\begin{array}{cc}4 & 2 \\ 2 & 6\end{array}\right)$, and $A^{T} \mathbf{b}=\binom{2}{-7}$, and the solution to $\left(\begin{array}{ll}4 & 2 \\ 2 & 6\end{array}\right)\binom{c_{0}}{c_{1}}=\binom{2}{-7}$ is $c_{0}=13 / 10$ and $c_{1}=-8 / 5$. That is, the best line is $y=-1.6 x+1.3$.

