In-the-Book Definitions (1)

The "In-the-Book Definitions" are the definitions given in the book of terms, some of which are well known and understood already with perhaps other simpler and equivalent definitions. However, the "In-the-Book Definitions" are the definitions which are necessary for using these terms in a proof. Although the simpler definitions learned in the past are useful for understanding the objects defined, these simpler definitions are often very difficult to use when writing a proof of a theorem which involves these objects.

Since the "In-the-Book Definitions" are the definitions to be used in proofs, it is important to <u>memorize</u> these definitions word for word. One advantage to memorizing these definitions is that, when one of these definitions is applied within a proof, the exact wording of the "In-the-Book Definition" can be used directly in the wording of the proof.

<u>Definition:</u> Let n be an integer.

Integer n is an even integer \Leftrightarrow there exists an integer k such that n = 2 k.

Integer n is an odd integer \Leftrightarrow there exists an integer k such that n = 2k + 1.

It can be proved that every integer is either even or odd and that no integer is both even and odd. The even-ness or odd-ness of an integer is called its <u>parity</u>. The terms <u>even number</u> and <u>odd number</u> mean "even integer" and "odd integer," respectively.

<u>Definition:</u> Let n be an integer.

```
Integer n is \underline{\text{prime}} \iff (n > 1) AND (\text{For all positive integers } r, s, \text{ IF } n = rs, \text{ THEN } (r = 1 \text{ OR } s = 1)).
```

Integer n is <u>composite</u> ⇔

The number 1 is neither prime nor composite.

It can be proved that every integer > 1 (which is greater than 1) is either prime or composite and no integer is both prime and composite.

The terms <u>prime number</u> and <u>composite number</u> mean "prime integer" and "composite integer," respectively.

Definition: Let r be a real number.

Real number r is <u>rational</u> ⇔

There exist integers a and b such that r = a/b and $b \neq 0$.

Real number r is <u>irrational</u> \Leftrightarrow r is not rational.

The terms <u>rational number</u> and <u>irrational number</u> mean "rational real number" and "irrational real number" respectively.

In mathematics, the phrase "There exist objects x and y such that ... " always includes the possibility that x and y represent the same object, that is that x = y. To require that x and y are not identical, the phrase "There exist distinct objects ... ".

Thus, the integers a and b in the definition above cannot be assumed to be distinct, that is, it is possible that they are equal (i.e., they represent the same number). Therefore, r = 1 is a rational number.

Definition: Let n and d be integers.

n is divisible by d

n is a multiple of d

 $d \underline{divides} n (written d | n)$

d is a divisor of n

d is a factor of n

 \Rightarrow There exists an integer k such that $n = d \cdot k$.

The integer 0 is divisible by every integer since $0 = 0 \cdot k$, for every integer k.

The integer 0 is a factor of no integer other than 0 itself since $n = 0 \cdot k$ implies n = 0.

It can be proved that for all <u>positive</u> values of d and n, $d \mid n \leftrightarrow n \div d$ has remainder 0.

Take care that " $d \mid n$ " is not accidentally written " $d \mid n$ " because " $d \mid n$ " represents a number whereas " $d \mid n$ " represents a relationship between integers. In fact, it can be proved that $d \mid n \Leftrightarrow n \mid d$ is an integer, and in this case, $k = n \mid d$.