Official In-the-book Definitions: Let F be a function from a set X to a set Y.
F is one-to-one (or injective) \Leftrightarrow For every u and $v i n X$,

$$
\text { If } F(\mathbf{u})=F(\mathbf{v}) \text {, Then } \mathbf{u}=\mathbf{v}
$$

Also,
F is one-to-one (or injective) \Leftrightarrow For every u and v in X,

$$
\text { If } \mathbf{u} \neq \mathbf{v} \text {, Then } F(\mathbf{u}) \neq \mathbf{F}(\mathbf{v}) .
$$

F is onto (or surjective) \Leftrightarrow For every element $\mathbf{y} \in \mathbf{Y}$, there exists some $x \in X$ such that $F(x)=y$.

F is a one-to-one correspondence (or a bijection) from X to Y
$\Leftrightarrow \mathbf{F}: \mathbf{X} \rightarrow \mathbf{Y}$ is both a one-to-one function and an onto function.

Memorize the above definitions for their use in writing proofs, but a more intuitive definition of these terms is useful and is as follows:

Let $\mathbf{f}: \mathbf{X} \rightarrow \mathbf{Y}$ be a function.

If $f: X \rightarrow Y$ is one-to-one and onto, then the inverse function $f^{-1}: Y \rightarrow X$ exists and $f^{-1}(y)=x$ if and only if $f(x)=y$, for all x in X and all y in Y.

Proof Design I for Proving Function F is One-to-One:
Function $\mathrm{F}: \mathbf{X} \rightarrow \mathrm{Y}$ is given.
To Prove: Function F is a one-to-one function.
Proof: Suppose that u and v are any two elements of X such that $F(u)=F(v) . \quad[W e ~ n e e d ~ t o ~ s h o w ~ t h a t ~ u=v]$.
... (Using the formula defining $F(x)$ or some other properties ... of the function F we derive simpler and simpler $\ldots \quad$ equations eventually arriving at " $u=v$ ".)
$\therefore \mathrm{u}=\mathrm{v}$.
$[\therefore \forall \mathbf{u}, \mathbf{v} \in \mathbf{X}, \quad$ If $\mathbf{F}(\mathbf{u})=\mathbf{F}(\mathbf{v})$, Then $\mathbf{u}=\mathbf{v}$.
\therefore F is one-to-one, by Direct Proof, by Direct Proof. Q E D

Proof Design II for Proving Function F is One-to-One:
Function $\mathrm{F}: \mathbf{X} \rightarrow \mathrm{Y}$ is given.

To Prove: Function F is a one-to-one function.
Proof: Suppose that u and v are any two elements of X such that $u \neq \mathrm{v}$. [We need to show that $F(u) \neq F(v)$.]
... (This is often accomplished using a proof-by-contradiction,
... but sometimes it can be shown directly that $F(\mathbf{u}) \neq F(\mathbf{v})$.)

$$
\therefore \mathbf{F}(\mathbf{u}) \neq \mathbf{F}(\mathbf{v}) .
$$

[$\therefore \forall \mathbf{u}, \mathbf{v} \in \mathbf{X}$, If $\mathbf{F}(\mathbf{u})=\mathbf{F}(\mathbf{v})$, Then $\mathbf{u}=\mathbf{v}$, by contraposition.]
\therefore F is one-to-one by Direct Proof. Q E D

Proof Design for Proving that Function F is Onto:
Function $\mathrm{F}: \mathbf{X} \rightarrow \mathbf{Y}$ is given.

To Prove: Function F is an onto function.
Proof: Suppose \mathbf{y} is any element in \mathbf{Y}.
[We need to show that there is some x in X with $F(x)=y$.
(Note: In a workspace, and before the writing of the proof has begun, the equation $F(x)=y$ is manipulated in order to solve for x in terms of y deriving a formula: $x=$ "Formula in terms of \mathbf{y} ". Use this formula to define the correct pre-image x for the selected y at the start .)

Let $x=$ "Formula in terms of $y "$

Then, $F(x)=($ the complicated expression obtained by replacing x by the "Formula in terms of y ") $=\ldots$ (simplifications) $\ldots=y$.
[$\therefore \forall \mathbf{y}$ in \mathbf{Y}, there exists an element \mathbf{x} in \mathbf{X} such that $F(\mathbf{x})=\mathbf{y}$.
\therefore F is onto, by Direct Proof. Q E D

Proof Design to Prove that \mathbf{F} is a One-to-One Correspondence (or Bijection):
Function $F: X \rightarrow Y$ is given.
To Prove: F is a One-to-One Correspondence.
Proof:
Part I: [Prove F is one-to-one.] \therefore F is one-to-one by Direct Proof.
Part II: [Prove F is onto.] \therefore F is onto by Direct Proof.
$\therefore F$ is one-to-one and onto.
\therefore F is a one-to-one correspondence. Q E D

