Theorem (NIB) 14:
Any infinite sequence of real numbers, all of which are between 0 and 1 , will fail to include at least one real number between 0 and 1 . That is:

For any infinite sequence $b_{1}, b_{2}, b_{3}, \ldots$ such that, $0<b_{i}<1$ for every $\mathbf{i} \in \mathbb{Z}^{+}$, there exists some real number $\mathrm{z}, 0<\mathrm{z}<1$, such that $\mathrm{b}_{\mathbf{i}} \neq \mathrm{z}$ for all $\mathbf{i} \in \mathbb{Z}^{+}$.

Proof:

Suppose $b_{1}, b_{2}, b_{3}, \ldots$ is any infinite sequence of real numbers such that, for all $\mathbf{i} \in \mathbb{Z}^{+}, 0<b_{\mathbf{i}}<1$.

Line up the b_{i} 's in a column with their decimal expansions, and ensure that in the decimal expansions, those expansions that end with 99999 .. are replaced by equivalent expansions that end with $00000 \ldots$
(each $\mathbf{d}_{\mathbf{i j}}$ is the $\mathbf{j}^{\text {th }}$ digit in the expansion of $\mathrm{b}_{\mathbf{i}}$ as found in the $\mathbf{i}^{\text {th }}$ row):

$$
\begin{aligned}
& \mathrm{b}_{1}=0
\end{aligned} \begin{array}{llllllll}
\mathrm{d}_{11} & \mathrm{~d}_{12} & \mathrm{~d}_{13} & \mathrm{~d}_{14} & \mathrm{~d}_{15} & \mathrm{~d}_{16} & \mathrm{~d}_{17} & \ldots \\
\mathrm{~b}_{2} & =0 & \mathrm{~d}_{21} & \mathrm{~d}_{22} & \mathrm{~d}_{23} & \mathrm{~d}_{24} & \mathrm{~d}_{25} & \mathrm{~d}_{26}
\end{array} \mathrm{~d}_{27} \ldots .
$$

A real number \mathbf{z} will be constructed so that $0<\mathrm{z}<1$ and such that \mathbf{z} does not appear in the sequence $b_{1}, b_{2}, b_{3}, \ldots$

To define this number \mathbf{z}, we will focus on the $\mathbf{i}^{\text {th }}$ digit, $\mathrm{d}_{\mathbf{i} \mathbf{i}}$, of the $\mathbf{i}^{\text {th }}$ term $\mathrm{b}_{\mathbf{i}}$ for each $\mathbf{i} \in \mathbb{Z}^{+}$:

| $\mathrm{b}_{1}=$ | 0 | . | $\mathrm{~d}_{11}$ | $\mathrm{~d}_{12}$ | $\mathrm{~d}_{13}$ | $\mathrm{~d}_{14}$ | $\mathrm{~d}_{15}$ | $\mathrm{~d}_{16}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\mathrm{~d}_{17} \ldots$.

Then, we define this real number \mathbf{z} as follows:

$$
\begin{gathered}
\mathbf{z}=0 . a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots \text {, where, for each } \mathbf{i} \in \mathbb{Z}^{+}, \\
a_{i}=\left\{\begin{array}{lll}
5 & \text { if } & d_{i i} \neq 5 \\
7 & \text { if } & d_{i i}=5
\end{array}\right.
\end{gathered}
$$

By this process, the number $z=0 . a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots$ is uniquely defined.
The digits in the decimal expansion of z consist of 5's and 7's and the choice of each digit as 5 or 7 depends on the digits in the decimal expansions of the particular numbers in the sequence $b_{1}, b_{2}, b_{3}, \ldots$.

For example, suppose the sequence $b_{1}, b_{2}, b_{3}, \ldots$ begins as follows:

Thus, the decimal expansion for z will begin as shown:

$$
\mathrm{z}=0.55757 \ldots
$$

Now, it can be seen that $\mathbf{z} \neq \mathbf{b}_{\mathbf{1}}$
because their expansions differ in the $1^{\text {st }}$ digit: $d_{11}=3$, whereas $a_{1}=5$.
It can be seen that $\mathbf{z} \neq \mathbf{b}_{\mathbf{2}}$
because their expansions differ in the $2^{\text {nd }}$ digit: $d_{22}=6$, whereas $a_{2}=5$.
It can be seen that $\mathbf{z} \neq \mathbf{b}_{3}$ because their expansions differ in the $3^{\text {rd }}$ digit: $d_{33}=5$, whereas $a_{3}=7$.
In the same way, for all $\mathbf{i} \in \mathbb{Z}^{+}, \mathbf{z} \neq \mathbf{b}_{\mathbf{i}}$ because their expansions differ in the $\mathrm{i}^{\text {th }}$ digit, $\mathrm{a}_{\mathrm{i}} \neq \mathrm{d}_{\mathrm{ii}}$.

If the sequence $b_{1}, b_{2}, b_{3}, \ldots$ is different, the number z will be different, but it will still be true that every digit in the decimal expansion of z is 5 or 7
(which guarantees that $0<z<1$)
and it will still be true that z differs from every number in the sequence.
Thus, in the general case, for the arbitrarily chosen sequence $b_{1}, b_{2}, b_{3}, \ldots$, there exists a real number z such that $0<z<1$ and $b_{i} \neq z$, for all $i \in \mathbb{Z}^{+}$.

Q E D

Theorem (NIB) 15: The interval $(0,1)=\{x \in \mathbb{R} \mid 0<x<1\}$ is uncountable.

Proof: (proof-by-contradiction)

The interval $(0,1)$ is either finite or infinite.
Certainly (0,1) is not finite because it contains the countably infinite set $\{1 / 2,1 / 3,1 / 4,1 / 5, \ldots\}$ as a subset.
\therefore The interval (0,1) is either a countably infinite set or an uncountable set.
Suppose that (0,1) is not uncountable, by way of contradiction.
Then, $(0,1)$ is countably infinite.
\therefore There exists a one-to-one correspondence $\mathrm{f}: \mathbb{Z}^{+} \rightarrow(0,1)$.
[Note: f is one-to-one and onto; in particular, f is onto.]
Define the infinite sequence $b_{1}, b_{2}, b_{3}, \ldots$ as follows:
For all $i \in \mathbb{Z}^{+}, b_{i}=f(i)$. Then, for all $i \in \mathbb{Z}^{+}, 0<b_{i}<1$.
By Theorem (NIB) 14, there is some real number $z, 0<z<1$, such that z does not appear in the sequence $b_{1}, b_{2}, b_{3}, \ldots$;
that is, for all $i \in \mathbb{Z}^{+}, b_{i} \neq z$. But that means that for all $i \in \mathbb{Z}^{+}, f(i) \neq z$.
Thus, f is not onto, which contradicts the assumption that f is a one-to-one correspondence. \therefore The interval $(0,1)$ is uncountable. Q E D

Theorem (NIB) 16: For Y equal to the set of all points on the Unit Circle minus the North Pole $(0,1)$, the set Y is uncountable.
Proof: There are one-to-one correspondences between the Unit Circle minus the North Pole and the Interval $(0,1)$ of real numbers. One such one-to-one correspondence is $\mathrm{f}:(0,1) \rightarrow \mathrm{Y}$, defined as follows: For all $t \in(0,1)$,

$$
\mathrm{f}(t)=\left(\cos \left(2 \pi t+\frac{\pi}{2}\right), \sin \left(2 \pi t+\frac{\pi}{2}\right)\right)
$$

Therefore, interval $(0,1)$ and Y have the same cardinality.
Since $(0,1)$ is uncountable by Theorem (NIB) 15 , Y is uncountable. QED

