
 
                           Proving that ( 0, 1 ) is an Uncountable Set 

 

Theorem (NIB) 14: 

      Any infinite sequence of real numbers, all of which are between  0 and 1, will fail to 

include at least one real number between 0 and 1.        That is: 

 

  For any infinite sequence  b1 , b2 , b3 , . . .   such that,   0  <  bi  <  1  for every i    + 
 ,  

 

there exists some real number  z ,   0  <  z  <  1 , such that  bi    z   for all  i    + 
 . 

  

Proof:  

     Suppose   b1 , b2 , b3 , . . .  is any infinite sequence of real numbers such that,  

for all  i    + 
, 0  <  bi  <  1 .   

 

    Line up the  bi’s in a column with their decimal expansions, and ensure that in the 

decimal expansions, those expansions that end  with 99999…  

are replaced by equivalent expansions that end with 00000…  

 

( each  d i j is the  j
th
  digit in the expansion of  bi  as found in the i

th
 row ): 

 

 

        b1   =   0   .    d11   d12     d13     d14    d15    d16    d17  .  .  . 

 

        b2   =   0   .    d21   d22     d23    d24     d25    d26    d27  .  .  . 

 

        b3   =   0   .    d31    d32    d33    d34    d35    d36    d37  .  .  . 

 

        b4   =   0   .    d41    d42    d43    d44    d45    d46   d47  .  .  . 

 

        b5    =   0   .    d51    d52    d53    d54    d55    d56   d57  .  .  . 

         .                                         . 

         .                                         . 

         .                                         . 

 A real number  z   will be constructed so that 0  <  z  <  1  and such that  z  does not 

appear in the sequence b1 , b2 , b3 , . . . . 
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To define this number  z , we will focus on the  i
th
 digit,  d i i , of the  i

th
  term  bi   for 

each  i    + 
 : 

 

 

     b1   =   0   .                   d12           d13                d14              d15           d16         d17    .  .  . 

 

     b2   =   0   .      d21                      d23           d24             d25             d26          d27    .  .  . 

 

     b3   =   0   .      d31            d32                         d34           d35             d36              d37   .  .  . 

 

     b4   =   0   .      d41            d42        d43                            d45             d46          d47    .  .  . 

 

     b5    =   0   .     d51             d52        d53           d54                           d56          d57  .  .  . 

            .                                                          . 

            .                                                          . 

            .                                                          . 

 

Then, we  define this real number  z  as follows: 
 

            z   =  0. a 1  a 2  a 3  a 4  a 5  a 6   .  .  .  ,  where,  for each  i    + 
 , 

 

                                    5    if   d i i      5 

                      a i   =           

                                    7    if   d i i   =   5 

 

 

 

  By this process, the number  z  =   0. a1 a2 a3 a4 a5 a6  .  .  .  is uniquely defined. 

 

The digits in the decimal expansion of  z  consist of  5’s  and 7’s  and the choice of each 

digit as  5  or  7  depends on the digits in the decimal expansions of the particular 

numbers in the sequence   b1 , b2 , b3 , . . .  . 

 

 

 

 d11 

 

d22 

d33 

d44 

d55 
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For example, suppose the sequence b1 , b2 , b3 , . . .  begins as follows: 

 

 

        b1   =   0   .              8         2        6        7        5         2    .  .  . 

 

        b2   =   0   .    4                  1         9        5        8         5   .  .  . 

 

        b3   =   0   .    9        3                  8        6 
      

   1         2   .  .  . 

  

        b4   =   0   .    2        5        0                  4         3        7  .  .  . 

 

        b5    =   0   .    5        8        7       2                    9        0  .  .  . 

               .                                           . 

               .                                           . 

               .                                           . 

 

Thus, the decimal expansion for z will begin as shown: 

 

 

                                             . 
 

Now, it can be seen that   z    b1   

      because their expansions differ in the 1
st
 digit:  d11 =  3 , whereas   a1 =  5 . 

           

It can be seen that   z    b2   

      because their expansions differ in the 2
nd

 digit:  d22 =  6 , whereas   a2 =  5 .  
 

It can be seen that   z    b3   

      because their expansions differ in the 3
rd

  digit:  d33 =  5 , whereas   a3 =  7 . 
           

In the same way, for all  i    + 
,  z    bi  because their expansions differ in the i

th
 digit,     

a i      d i i   . 

 

If the sequence   b1 , b2 , b3 , . . .  is different, the number  z  will be different, 

but it will still be true that every digit in the decimal expansion of  z  is  5  or  7 

   (which guarantees that   0  <  z  <  1) 

and it will still be true that  z  differs from every number in the sequence. 

 

Thus, in the general case, for the arbitrarily chosen sequence  b1 , b2 , b3 , . . . , 

there exists a real number z such that  0  <  z  <  1 and  bi    z , for all  i    + 
.  

              Q  E  D      
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Theorem (NIB) 15:  The interval ( 0 , 1 )  =  {  x    |   0  <  x  <  1 }  is uncountable. 

 

     Proof:  (proof-by-contradiction) 
 

       The interval  ( 0 , 1 )  is either finite or infinite.   
 

       Certainly ( 0 , 1 ) is not finite because it contains the countably infinite set 

                        {  1/2 , 1/3 , 1/4 , 1/5 , . . . } as a subset. 
 

   The interval ( 0 , 1 ) is either a countably infinite set or an uncountable set. 

 

             Suppose that ( 0 , 1 ) is not uncountable, by way of contradiction. 

 

   Then,   ( 0 , 1 )  is countably infinite.    

 There exists a one-to-one correspondence f :  +
  ( 0 , 1 ) .   

              [Note: f is one-to-one and onto;  in particular,  f  is  onto.] 

  

Define the infinite sequence   b1 , b2 , b3 , . . .  as follows: 
 

        For all  i    +  
,  bi  =  f( i ) .   Then, for all  i    +

,  0  <  bi  <  1 . 

 

    By Theorem (NIB) 14, there is some real number  z ,  0  <  z  <  1,  such that   z  does 

not appear in the sequence  b1 , b2 , b3 , . . .  ; 

that is,  for all  i    +
, bi    z .  But that means that  for all  i    +

,   f( i )    z .   

Thus,  f  is not onto,  which contradicts the assumption that f  is a one-to-one 

correspondence.    The interval  ( 0 , 1 )  is uncountable.         Q E D     

 

Theorem (NIB) 16:   For  Y equal to the set of all 

points on the Unit Circle minus the North Pole (0,1) , 
 

                the set   Y  is uncountable. 
 

   Proof:  There are one-to-one correspondences 

between the Unit Circle minus  the North Pole  and  

the Interval  ( 0 , 1 )  of real numbers.   One such 

one-to-one correspondence is   f : ( 0 , 1 )  Y,  

defined as follows:  For all  t  ( 0 , 1 ) ,   

      f( t )  =   (  cos ( 2 t  +  
2


)  ,  sin ( 2 t  +  

2


)  ) . 

 Therefore,  interval ( 0 , 1 )  and  Y  have the same    

      cardinality.     

  Since  ( 0 , 1 ) is uncountable by Theorem (NIB) 15,      

      Y  is uncountable.    Q E D   
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