Theorem (NIB) 14:

Any infinite sequence of real numbers, all of which are between 0 and 1, will fail to include at least one real number between 0 and 1. That is:

For any infinite sequence b_1 , b_2 , b_3 , ... such that, $0 < b_i < 1$ for every $i \in \mathbb{Z}^+$,

there exists some real number $z \ , \ 0 < z < 1$, such that $\ b_i \not= z \ \ for \ all \ i \in \mathbb{Z}^+$.

Proof:

Suppose b_1 , b_2 , b_3 ,... is any infinite sequence of real numbers such that, for all $i \in \mathbb{Z}^+$, $0 < b_i < 1$.

Line up the b_i 's in a column with their decimal expansions, and ensure that in the decimal expansions, those expansions that end with 99999... are replaced by equivalent expansions that end with 00000...

(each \mathbf{d}_{ij} is the \mathbf{j}^{th} digit in the expansion of \mathbf{b}_i as found in the \mathbf{i}^{th} row):

•

A real number z will be constructed so that 0 < z < 1 and such that z does not appear in the sequence b_1 , b_2 , b_3 ,

To define this number z , we will focus on the $\,i^{th}$ digit, $\,d_{\,i\,i}$, of the $\,i^{th}$ term $\,b_i\,$ for each $\,i\,\in\,\mathbb{Z}^+$:

Then, we define this real number \mathbf{z} as follows:

 $\mathbf{z} = 0. a_1 a_2 a_3 a_4 a_5 a_6 \dots, \text{ where, for each } \mathbf{i} \in \mathbb{Z}^+,$ $a_{i_{-}} \begin{cases} 5 & \text{if } d_{i_{1}} \neq 5 \\ 7 & \text{if } d_{i_{1}} = 5 \end{cases}$

By this process, the number z = 0. $a_1 a_2 a_3 a_4 a_5 a_6 \ldots$ is uniquely defined.

The digits in the decimal expansion of z consist of 5's and 7's and the choice of each digit as 5 or 7 depends on the digits in the decimal expansions of the particular numbers in the sequence b_1, b_2, b_3, \ldots .

For example, suppose the sequence b_1 , b_2 , b_3 , ... begins as follows:

b_1	=	0		3	8	2	6	7	5	2
b_2	=	0		4	6	1	9	5	8	5
b_3	=	0		9	3	5	8	6	1	2
b_4	=	0		2	5	0	9	4	3	7
b ₅	=	0	•	5	8	7	2	5	9	0
	•						•			
	•						•			

Thus, the decimal expansion for z will begin as shown:

z = 0.55757...

Now, it can be seen that $\mathbf{z} \neq \mathbf{b}_1$

because their expansions differ in the 1^{st} digit: $d_{11} = 3$, whereas $a_1 = 5$.

It can be seen that $\mathbf{z} \neq \mathbf{b}_2$

because their expansions differ in the 2^{nd} digit: $d_{22} = 6$, whereas $a_2 = 5$.

It can be seen that $\mathbf{z} \neq \mathbf{b}_3$

because their expansions differ in the 3^{rd} digit: $d_{33} = 5$, whereas $a_3 = 7$.

In the same way, for all $i \in \mathbb{Z}^+$, $z \neq b_i$ because their expansions differ in the ith digit, $a_i \neq d_{ii}$.

If the sequence b_1 , b_2 , b_3 ,... is different, the number z will be different, but it will still be true that every digit in the decimal expansion of z is 5 or 7

(which guarantees that 0 < z < 1) and it will still be true that z differs from every number in the sequence.

Thus, in the general case, for the arbitrarily chosen sequence b_1, b_2, b_3, \ldots , there exists a real number z such that 0 < z < 1 and $b_i \neq z$, for all $i \in \mathbb{Z}^+$.

Q E D

<u>Theorem (NIB) 15</u>: The interval $(0, 1) = \{x \in \mathbb{R} \mid 0 < x < 1\}$ is uncountable.

Proof: (proof-by-contradiction)

The interval (0, 1) is either finite or infinite.

Certainly (0, 1) is not finite because it contains the countably infinite set $\{ 1/2, 1/3, 1/4, 1/5, ... \}$ as a subset.

 \therefore The interval (0, 1) is either a countably infinite set or an uncountable set.

Suppose that (0, 1) is not uncountable, by way of contradiction.

Then, (0, 1) is countably infinite.

 \therefore There exists a one-to-one correspondence $f:\ \mathbb{Z}^{\scriptscriptstyle +} \to (\ 0\ ,\ 1\)$.

[Note: f is one-to-one and onto; in particular, f is onto.]

Define the infinite sequence b_1, b_2, b_3, \ldots as follows:

For all $i \in \mathbb{Z}^+$, $b_i = f(i)$. Then, for all $i \in \mathbb{Z}^+$, $0 < b_i < 1$.

By Theorem (NIB) 14, there is some real number z, 0 < z < 1, such that z does not appear in the sequence b_1 , b_2 , b_3 , ...;

that is, for all $i \in \mathbb{Z}^+$, $b_i \neq z$. But that means that for all $i \in \mathbb{Z}^+$, $f(i) \neq z$.

Thus, f is not onto, which contradicts the assumption that f is a one-to-one correspondence. \therefore The interval (0, 1) is uncountable. Q E D

<u>Theorem (NIB) 16</u>: For Y equal to the set of all points on the Unit Circle minus the North Pole (0,1),

the set Y is uncountable.

Proof: There are one-to-one correspondences between the Unit Circle minus the North Pole and the Interval (0, 1) of real numbers. One such one-to-one correspondence is $f:(0, 1) \rightarrow Y$, defined as follows: For all $t \in (0, 1)$,

f(t) =
$$(\cos(2\pi t + \frac{\pi}{2}), \sin(2\pi t + \frac{\pi}{2}))$$
.

Therefore, interval (0, 1) and Y have the same cardinality.

Since (0, 1) is uncountable by Theorem (NIB) 15, Y is uncountable. Q E D

