In-the-Book Definitions (II)

Set U is the Universal Set. Any sets discussed are subsets of the Universal Set U.

Set A is *non-empty* ($A \neq \emptyset$) \Leftrightarrow There exists an element $x \in U$ such that $x \in A$.

The <u>Union</u> of set A and set B is the set $A \cup B$ where:

 $A \cup B = \{x \in U \mid x \in A \text{ OR } x \in B\}.$

The *procedural* definition of $A \cup B$ which is useful for writing proofs involving $A \cup B$ is:

 $x \in \ A \cup B \ \Leftrightarrow \ x \in A \ OR \ x \in B \ .$

Whenever a set X is defined in the form

 $X = \{x \in U \mid \text{Predicate P is true about x}\},\$

the *procedural* definition of X is: $x \in X \Leftrightarrow$ Predicate P is true about x.

The <u>Intersection</u> (\cap) and <u>Difference</u> (-) of sets A and B, and the <u>Complement</u> (A^c) of set A, are defined as follows:

Set A *is a subset of* Set B ($A \subseteq B$) \Leftrightarrow For all elements $x \in U$, if $x \in A$, then $x \in B$.

A collection $\{A_1, A_2, \dots, A_n\}$ of non-empty subsets of A is a <u>Partition of set A</u>

 $\Leftrightarrow \quad \ \ 1) \ A \ = \ A_1 \cup A_2 \cup \ ... \ \cup A_n \quad and \quad \ \ 2) \ when \quad i \neq j \ , \ A_i \cap \ A_j \ = \ \varnothing \ .$

Given a set A, the <u>Power Set of A</u>, denoted $\mathcal{P}(A)$ is the set of all subsets of A. When A is finite with n elements, then $\mathcal{P}(A)$ has 2^n elements.

<u>Set Equality</u>: Set A = Set B \Leftrightarrow A \subseteq B and B \subseteq A.

A (Binary) <u>Relation</u> R from set A to Set B is <u>any subset</u> of the Cartesian Product $A \times B$.

Given such a relation R, for all $a \in A$ and $b \in B$, $a R b \Leftrightarrow (a, b) \in R$.

The <u>Inverse Relation</u> R^{-1} is the subset of $B \times A$ such that

 $\text{for all } b \in B \quad \text{and } a \in A, \quad (\ b, \ a \) \in R^{-1} \ \Leftrightarrow \ (\ a, \ b \) \in R \ ; \quad \text{thus}, \quad b \ R^{-1} \ a \ \Leftrightarrow \ a \ R \ b \ .$

A Relation R <u>on A</u> is a relation R from A to A, that is, from A to B with B = A.

Let R be a binary relation on set A:

- 1) R is <u>reflexive</u> $\Leftrightarrow \forall x \in A, x R x$.
- 2) R is symmetric $\Leftrightarrow \forall x, y \in A$, IF x R y, THEN y R x.
- 3) R is transitive $\Leftrightarrow \forall x, y, z \in A$, IF x R y and y R z, THEN x R z.

An Equivalence Relation is a relation which is reflexive, symmetric and transitive.

Given the Equivalence Relation R on set A and given element a in set A, the Equivalence Class of a (or just the Class of a) is denoted [a] and is defined as [a] = { x ∈ A | x R a }.

Any element z in an equivalence class for equivalence relation R is called an <u>Equivalence Class Representative</u> of that class, and in this case the equivalence class containing the representative z will be the set [z].

A <u>Complete Set of Equivalence Class Representatives</u> is a set containing exactly one representative from each of the equivalence classes of R.

A <u>Function f from Set X to Set Y</u>, denoted $f: X \rightarrow Y$, is a binary relation from X to Y such that both:

1) For every element x in X, there is some element y in Y with $(x, y) \in f$, that is, x f y for at least one element y in Y, and

2) For every element x in X and all elements y and z in Y,
if x f y and x f z, then y = z,
that is, f relates each x in X to only one element y in Y.

Here, the set X is called the domain of f; the set Y is the <u>co-domain of f</u>.

For a given $x \in X$, there is a unique $y \in Y$ with x f y, and this element y is called "the image of x under f", or also, "the value of the function f at x", or also "f of x", and we write "y = f(x)" to be read as "y equals f of x."

The <u>Range of f</u> is the set of all images of f in the set Y; that is,

<u>Range of f</u> = { $y \in Y | y = f(x)$ for some $x \in X$ }.

The (Range of f) \subseteq Co-domain Y, but it can happen that the (Range of f) \neq Y.

Given an element y in Y, the inverse image of y in X under f is the set:

inverse image of $y = \{ x \in X \mid f(x) = y \}$.

For all $y \in Y$, $y \in ($ Range of f $) \Leftrightarrow$ inverse image of y under f is not \mathscr{G} .

For all subsets $A \subseteq X$ and all subsets $C \subseteq Y$,

the image of A under f (or f of A) is $f(A) = \{ y \in Y \mid y = f(x) \text{ for some } x \in A \}$, and the inverse image of C (or f inverse of C) is $f^{-1}(C) = \{ x \in X \mid f(x) \in C \}$.

<u>Equality of Functions</u>: Suppose $f : X \to Y$ and $g : X \to Y$ are functions from X to Y. Then <u>fequals g</u> (f = g) \Leftrightarrow

1) f and g have the same domains and co-domains, and

2) $\forall x \in X$, f(x) = g(x).

Given set X, define the identity function i_X by the rule: $\forall z \in X$, $i_X(z) = z$.

Let f be a function from a set X to a set Y.

f is <u>one-to-one</u> (or <u>injective</u>) \Leftrightarrow For every u and v in X,

If f(u) = f(v), Then u = v \Leftrightarrow For every u and v in X, If $u \neq v$, Then $f(u) \neq f(v)$.

f is <u>onto</u> (or <u>surjective</u>) \Leftrightarrow For every element $y \in Y$,

there exists some $x \in X$ such that f(x) = y.

f is a <u>one-to-one correspondence</u> (or a <u>bijection</u>) from X to Y

 \Leftrightarrow f: X \rightarrow Y is both a one-to-one function and an onto function.

Given that $f: X \to Y$ is a one-to-one correspondence from X to Y, then the inverse relation f^{-1} is also a function , $f^{-1}: Y \to X$, and is such that

 $\forall y \in Y, f^{-1}(y) = x \Leftrightarrow f(x) = y.$

Composition of Functions:

Given functions f and g, where $f: X \to V$ and $g: Y \to Z$, where X, Y, V, and Z are any sets, such that the (range of f) \subseteq (domain of g) = Y,

the <u>Composition of f and g</u> (written $g \circ f$) is the function defined by the rule:

 $\forall x \in X, g \circ f(x) = g(f(x)) \text{ in } Z.$

(We can refer to the composition of f and g as "g circle f," and, given a particular value of x, we can say, "g circle f of x equals g - of - f - of - x.")

Note:

- If $f: X \to Y$ and $g: Y \to Z$ are two functions such that f and g are both one-to-one, then $g \circ f: X \to Z$ is also one-to-one. (Theorem 7.3.3)
- If $f: X \to Y$ and $g: Y \to Z$ are two functions such that f and g are both onto, then $g \circ f: X \to Z$ is also onto. (Theorem 7.3.4)
- If $f: X \to Y$ and $g: Y \to Z$ are two functions such that f and g are both one-to-one and onto (i.e., f and g are one-to-one correspondences), then $g \circ f: X \to Z$ is also one-to-one and onto (i.e., $g \circ f$ is also a one-to-one correspondence).
- If $f: X \to Y$ is a one-to-one correspondence, then the inverse function, $f^{-1}: Y \to X$, Is also a one-to-one correspondence, and (using i_X and i_Y for the identity functions),

 $f^{-1} \circ f = i_X$ and $f \circ f^{-1} = i_Y$

that is: $\forall x \in X$, $f^{-1} \circ f(x) = f^{-1}(f(x)) = x = i_X(x)$, and

$$\forall y \in Y, f \circ f^{-1}(y) = f(f^{-1}(y)) = y = i_Y(y)$$
.

Having the SAME CARDINALITY:

Set <u>A has the same cardinality as Set B</u> if there is a one-to-one correspondence from A to B. A and B <u>have the same cardinality</u> if A has the same cardinality as B and B has the same cardinality as A.

For a non-empty Set X :

Set X is <u>infinite</u> $\Leftrightarrow \forall n \in \mathbb{Z}^+$, X and { 1, 2, ..., n } do not have the same cardinality. Set X is <u>countably infinite</u> \Leftrightarrow X and \mathbb{Z}^+ have the same cardinality. Set X is <u>countable</u> \Leftrightarrow X is finite OR X is countably infinite. A set which is not countable is said to be <u>uncountable</u>.