In-the-Book Definitions (II)

Set U is the Universal Set. Any sets discussed are subsets of the Universal Set U.
Set A is non-empty $(A \neq \varnothing) \Leftrightarrow$ There exists an element $x \in U$ such that $x \in A$.
The Union of set A and set B is the set $A \cup B$ where:

$$
A \cup B=\{x \in U \mid x \in A \text { OR } x \in B\}
$$

The procedural definition of $A \cup B$ which is useful for writing proofs involving $A \cup B$ is:

$$
x \in A \cup B \Leftrightarrow x \in A \text { OR } x \in B .
$$

Whenever a set X is defined in the form

$$
X=\{x \in U \mid \text { Predicate } P \text { is true about } x\},
$$

the procedural definition of X is: $\mathrm{X} \in \mathrm{X} \Leftrightarrow$ Predicate P is true about x .

The Intersection (\cap) and Difference (-) of sets A and B, and the Complement $\left(A^{C}\right)$ of set A, are defined as follows:

$$
\begin{aligned}
A \cap B= & \{x \in U \mid x \in A \text { AND } x \in B\} ; \quad A^{c}=\{x \in U \mid x \notin A\} ; \\
& A-B=\{x \in U \mid x \in A \text { AND } x \notin B\}
\end{aligned}
$$

Set A is a subset of Set $B(A \subseteq B) \quad \Leftrightarrow \quad$ For all elements $x \in U$, if $x \in A$, then $x \in B$.
A collection $\left\{A_{1}, A_{2}, \ldots A_{n}\right\}$ of non-empty subsets of A is a Partition of set A

$$
\Leftrightarrow \quad \text { 1) } A=A_{1} \cup A_{2} \cup \ldots \cup A_{n} \text { and 2) when } i \neq j, A_{i} \cap A_{j}=\varnothing \text {. }
$$

Given a set A, the Power Set of A, denoted $\mathscr{P}(A)$ is the set of all subsets of A. When A is finite with n elements, then $\mathscr{P}(\mathrm{A})$ has 2^{n} elements.

$$
\text { Set Equality: } \quad \text { Set } A=\operatorname{Set} B \quad \Leftrightarrow \quad A \subseteq B \text { and } B \subseteq A \text {. }
$$

A (Binary) Relation R from set A to Set B is any subset of the Cartesian Product $A \times B$.
Given such a relation R, for all $a \in A$ and $b \in B, a R b \Leftrightarrow(a, b) \in R$.
The Inverse Relation R^{-1} is the subset of $B \times A$ such that for all $b \in B$ and $a \in A, \quad(b, a) \in R^{-1} \Leftrightarrow(a, b) \in R$; thus, $b R^{-1} a \Leftrightarrow a R b$.
A Relation R on A is a relation R from A to A, that is, from A to B with $B=A$.

Let R be a binary relation on set A :

1) R is reflexive $\Leftrightarrow \forall x \in A, x R x$.
2) R is symmetric $\Leftrightarrow \forall x, y \in A$, IF $x R y$, THEN $y R x$.
3) R is transitive $\Leftrightarrow \forall x, y, z \in A$, IF $x R y$ and $y R z$, THEN $x R z$.

An Equivalence Relation is a relation which is reflexive, symmetric and transitive.

Given the Equivalence Relation R on set A and given element a in set A, the Equivalence Class of a (or just the Class of a) is denoted [a] and is defined as $[a]=\{x \in A \mid x R a\}$.

Any element z in an equivalence class for equivalence relation R is called an Equivalence Class Representative of that class, and in this case the equivalence class containing the representative z will be the set $[z]$.

A Complete Set of Equivalence Class Representatives is a set containing exactly one representative from each of the equivalence classes of R.

A Function f from Set X to Set Y, denoted $f: X \rightarrow Y$, is a binary relation from X to Y such that both:

1) For every element x in X, there is some element y in Y with $(x, y) \in f$, that is, $x f y$ for at least one element y in Y, and
2) For every element x in X and all elements y and z in Y,
if $x f y$ and $x f z$, then $y=z$,
that is, f relates each x in X to only one element y in Y.
Here, the set X is called the domain of f; the set Y is the co-domain of f.
For a given $x \in X$, there is a unique $y \in Y$ with $x f y$, and this element y is called "the image of x under f ", or also, "the value of the function f at x ", or also " f of x ", and we write " $y=f(x)$ " to be read as " y equals f of x."

The Range of f is the set of all images of f in the set Y; that is,

$$
\underline{\text { Range of } f}=\{y \in Y \mid y=f(x) \text { for some } x \in X\}
$$

The (Range off) \subseteq Co-domain Y, but it can happen that the (Range of f) $\neq Y$.

Given an element y in Y, the inverse image of y in X under f is the set:

$$
\text { inverse image of } y=\{x \in X \mid f(x)=y\}
$$

For all $y \in Y, y \in($ Range of $f) \Leftrightarrow$ inverse image of y under f is not \varnothing.
For all subsets $A \subseteq X$ and all subsets $C \subseteq Y$, the image of A under f (or f of A) is $f(A)=\{y \in Y \mid y=f(x)$ for some $x \in A\}$, and the inverse image of C (or f inverse of C) is $f^{-1}(C)=\{x \in X \mid f(x) \in C\}$.

Equality of Functions: Suppose $f: X \rightarrow Y$ and $g: X \rightarrow Y$ are functions from X to Y.
Then fequals $g(f=g) \Leftrightarrow$

1) f and g have the same domains and co-domains, and
2) $\forall x \in X, f(x)=g(x)$.

Given set X, define the identity function i_{X} by the rule: $\forall z \in X, i_{X}(z)=z$.

Let f be a function from a set X to a set Y.
f is one-to-one (or injective) \Leftrightarrow For every u and v in X,
If $f(u)=f(v)$, Then $u=v$
\Leftrightarrow For every u and v in X,
If $u \neq v$, Then $f(u) \neq f(v)$.
f is onto (or suriective) \Leftrightarrow For every element $y \in Y$, there exists some $x \in X$ such that $f(x)=y$.
f is a one-to-one correspondence (or a bijection) from X to Y
$\Leftrightarrow f: X \rightarrow Y$ is both a one-to-one function and an onto function.
Given that $f: X \rightarrow Y$ is a one-to-one correspondence from X to Y, then the inverse relation f^{-1} is also a function, $f^{-1}: Y \rightarrow X$, and is such that

$$
\forall y \in Y, f^{-1}(y)=x \Leftrightarrow f(x)=y
$$

Composition of Functions:

Given functions f and g, where $f: X \rightarrow V$ and $g: Y \rightarrow Z$, where X, Y, V, and Z are any sets, such that the (range of f) $\subseteq($ domain of $g)=Y$,
the Composition of f and g (written $g \circ f$) is the function defined by the rule:

$$
\forall x \in X, \quad g \circ f(x)=g(f(x)) \text { in } Z
$$

(We can refer to the composition of f and g as " g circle f," and, given a particular value of x, we can say, " g circle f of x equals $g-$ of $-f-$ of $-x$.")

Note:
If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are two functions such that f and g are both one-to-one, then $\mathrm{g} \circ \mathrm{f}: \mathrm{X} \rightarrow \mathrm{Z}$ is also one-to-one. (Theorem 7.3.3)

If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are two functions such that f and g are both onto, then $g \circ f: X \rightarrow Z$ is also onto. (Theorem 7.3.4)

If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are two functions such that f and g are both one-to-one and onto (i.e., f and g are one-to-one correspondences), then $g \circ f: X \rightarrow Z$ is also one-to-one and onto
(i.e., $g \circ f$ is also a one-to-one correspondence).

If $f: X \rightarrow Y$ is a one-to-one correspondence, then the inverse function, $\mathrm{f}^{-1}: \mathrm{Y} \rightarrow \mathrm{X}$, Is also a one-to-one correspondence, and (using i_{X} and i_{Y} for the identity functions),

$$
f^{-1} \circ f=i_{X} \quad \text { and } \quad f \circ f^{-1}=i_{Y}
$$

that is: $\forall x \in X, f^{-1} \circ f(x)=f^{-1}(f(x))=x=i_{X}(x)$, and

$$
\forall \mathrm{y} \in \mathrm{Y}, \mathrm{f} \circ \mathrm{f}^{-1}(\mathrm{y})=\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{y})\right)=\mathrm{y}=i_{Y}(\mathrm{y})
$$

Having the SAME CARDINALITY:
Set A has the same cardinality as Set B if there is a one-to-one correspondence from A to B. A and B have the same cardinality if A has the same cardinality as B and B has the same cardinality as A.

For a non-empty Set X :
Set X is infinite $\Leftrightarrow \forall n \in \mathbb{Z}^{+}, X$ and $\{1,2, \ldots, n\}$ do not have the same cardinality. Set X is countably infinite $\Leftrightarrow X$ and \mathbb{Z}^{+}have the same cardinality.
Set X is countable $\Leftrightarrow X$ is finite $O R X$ is countably infinite.
A set which is not countable is said to be uncountable.

