In all of the formulas below, m, n, k, and t are all positive integers .
I. Strategy for Integrating $\int\left(\sin ^{m} x\right)\left(\cos ^{n} x\right) d x$
A. If \mathbf{n} is odd,
use $\mathbf{u}=\sin \mathbf{x}, \mathbf{d u}=\boldsymbol{\operatorname { c o s }} \mathbf{x} \mathbf{d x}$ and write all the $\cos ^{2} x$ factors as $\left(1-\sin ^{2} x\right)$.
B. If m is odd,
use $\mathbf{u}=\cos \mathbf{x}, \mathbf{d u}=-\sin \mathbf{x} d x$ and write all the $\sin ^{2} x$ factors as $\left(1-\cos ^{2} x\right)$.
C. If both m and n are even, then

1) if $m=n$, use $\sin 2 x=2(\sin x)(\cos x)$ to simplify the integrand.
2) otherwise, write all the $\sin ^{2} x$ factors as $\left(\frac{1}{2}-\frac{1}{2} \cos 2 x\right)$, and then write all the $\cos ^{2} x$ factors as $\left(\frac{1}{2}+\frac{1}{2} \cos 2 x\right)$.

Examples

Type I A:

$$
\int\left(\sin ^{6} x\right)\left(\cos ^{3} x\right) d x=\int\left(\sin ^{6} x\right)\left(\cos ^{2} x\right)(\cos x) d x=\int\left(\sin ^{6} x\right)\left(1-\sin ^{2} x\right)(\cos x) d x=\int u^{6}\left(1-u^{2}\right) d u
$$

Type I B:

$\int\left(\sin ^{5} x\right)\left(\cos ^{2} x\right) d x=\int\left(\sin ^{4} x\right)\left(\cos ^{2} x\right)(\sin x) d x=\int\left(1-\cos ^{2} x\right)^{2}\left(\cos ^{2} x\right)(\sin x) d x=-\int\left(1-u^{2}\right)^{2} u^{2} d u$

Type I C:

$\int\left(\sin ^{4} x\right)\left(\cos ^{4} x\right) d x=\int(\sin x \cos x)^{4} d x=\int\left(\frac{1}{2} \sin 2 x\right)^{4} d x=\frac{1}{16} \int\left(\sin ^{2} 2 x\right)^{2} d x=\frac{1}{16} \int\left(\frac{1}{2}-\frac{1}{2} \cos 4 x\right)^{2} d x$
II. Strategy for Integrating $\int\left(\tan ^{m} x\right)\left(\sec ^{n} x\right) d x$
A. If n is even,
use $\mathbf{u}=\tan \mathbf{x}, \mathbf{d u}=\sec ^{2} \mathbf{x d x}$ and write all the other $\sec ^{2} x$ factors as $\left(1+\tan ^{2} x\right)$.
B. If m is odd,
use $\mathbf{u}=\boldsymbol{\operatorname { s e c }} \mathbf{x}, \mathbf{d u}=(\sec \mathbf{x})(\tan \mathbf{x}) \mathbf{d x}$ and write all the $\tan ^{2} x$ factors as $\left(\sec ^{2} x-1\right)$.
C. Otherwise, try using trig identities, integration by parts, etc.
--- Nothing is definite here.

Examples

Type II A:
$\int\left(\tan ^{8} x\right)\left(\sec ^{4} x\right) d x=\int\left(\sec ^{2} x\right)\left(\tan ^{8} x\right)\left(\sec ^{2} x\right) d x=\int\left(\tan ^{2} x+1\right)\left(\tan ^{8} x\right)\left(\sec ^{2} x\right) d x=\int\left(u^{2}+1\right) u^{8} d u$

Type II B:

$\int\left(\tan ^{3} x\right)\left(\sec ^{7} x\right) d x=\int\left(\sec ^{6} x\right)\left(\tan ^{2} x\right)(\sec x \tan x) d x=\int\left(\sec ^{6} x\right)\left(\sec ^{2} x-1\right)(\sec x \tan x) d x=\int u^{6}\left(u^{2}-1\right) d u$

Type II C:

$\int\left(\sec ^{7} x\right)\left(\tan ^{4} x\right) d x=\int\left(\sec ^{7} x\right)\left(\tan ^{2} x\right)^{2} d x=\int\left(\sec ^{7} x\right)\left(\sec ^{2} x-1\right)^{2} d x=$

$$
\int\left(\sec ^{7} x\right)\left(1-2 \sec ^{2} x+\sec ^{4} x\right) d x=\int \sec ^{7} x d x-2 \int \sec ^{9} x d x+\int \sec ^{11} x d x
$$

From this point, one can apply the techniques for integrating single powers of trig functions (Integrals of Type III).

III. Strategy for Integrating:

A. $\int \sin ^{m} x d x$,
B. $\int \cos ^{n} x d x$,
C. $\int \tan ^{k} x d x$,
D. $\int \sec ^{t} x d x$
A. If \mathbf{m} is odd, use the methods for Type IB.

If \mathbf{m} is even, write all the $\sin ^{2} x$ factors as $\left(\frac{1}{2}-\frac{1}{2} \cos 2 x\right)$.
B. If \mathbf{n} is odd, use the methods for Type I A.

If \mathbf{n} is even, write all the $\cos ^{2} x$ factors as $\left(\frac{1}{2}+\frac{1}{2} \cos 2 x\right)$.
C. If \mathbf{k} is odd, then save one $(\tan \mathbf{x})$ factor and write all the $\tan ^{2} x$ factors as $\left(\sec ^{2} x-1\right)$, and then use the methods for Type II B.
If \mathbf{k} is even, then use the reduction formula:

$$
\int \tan ^{k} x d x=\frac{1}{k-1} \tan ^{k-1} x-\int \tan ^{k-2} x d x
$$

D. If \mathbf{t} is even, then use the methods for Type II A. If t is odd, then use the reduction formula:

$$
\int \sec ^{t} x d x=\frac{1}{t-1} \tan x \sec ^{t-2} x+\frac{t-2}{t-1} \int \sec ^{t-2} x d x
$$

The following two integrals are also used in the above methods:

$$
\int \tan x d x=\ln |\sec x|+C \quad \text { and } \quad \int \sec x d x=\ln |\sec x+\tan x|+C
$$

They are derived as follows:

$$
\begin{aligned}
& \int \tan x d x=\int \frac{\sin x}{\cos x} d x=-\int \frac{1}{u} d u=-\ln |u|+C=\ln |\cos x|^{-1}+C=\ln |\sec x|+C \\
& \int \sec x d x=\int \sec x\left(\frac{\sec x+\tan x}{\sec x+\tan x}\right) d x=\int\left(\frac{\sec x \tan x+\sec ^{2} x}{\sec x+\tan x}\right) d x=\int \frac{1}{u} d u=\ln |\sec x+\tan x|+C
\end{aligned}
$$

Useful Trigonometric Identities:

The Pythagorean Identity:

$$
\cos ^{2} x+\sin ^{2} x=1, \quad \text { which implies: } \cos ^{2} x=1-\sin ^{2} x, \sin ^{2} x=1-\cos ^{2} x
$$

The Double Angle Formulas (derived from the sum-of-angle formulas):

$\sin 2 x=2 \sin x \cos x$
$\cos 2 x=\cos ^{2} x-\sin ^{2} x$, which implies: $\cos 2 x=1-2 \sin ^{2} x$, and $\cos 2 x=2 \cos ^{2} x-1$

The $\sec ^{2} x$ and $\tan ^{2} x$ Formulas:

$$
\sec ^{2} x=1+\tan ^{2} x \quad \text { and } \quad \tan ^{2} x=\sec ^{2} x-1
$$

The very useful $\cos ^{2} x$ and $\sin ^{2} x$ Formulas:

$$
\cos ^{2} x=\left(\frac{1}{2}+\frac{1}{2} \cos 2 x\right) \quad \text { and } \quad \sin ^{2} x=\left(\frac{1}{2}-\frac{1}{2} \cos 2 x\right)
$$

Derivations:

Divide both sides of $\cos ^{2} x+\sin ^{2} x=1$ by $\cos ^{2} x$; Result: $1+\tan ^{2} x=\sec ^{2} x$
This immediately gives $\sec ^{2} x=1+\tan ^{2} x \quad$ and $\quad \tan ^{2} x=\sec ^{2} x-1$.

To both sides of $\cos 2 x=2 \cos ^{2} x-1$, add 1; Result: $2 \cos ^{2} x=1+\cos 2 x$
Now, multiply by $1 / 2$; Result: $\cos ^{2} x=\left(\frac{1}{2}+\frac{1}{2} \cos 2 x\right)$

To both sides of $\cos 2 x=1-2 \sin ^{2} x$,
add $2 \sin ^{2} x$ and subtract $\cos 2 x$; Result: $2 \sin ^{2} x=1-\cos 2 x$

Now, multiply by $1 / 2$; Result: $\sin ^{2} x=\left(\frac{1}{2}-\frac{1}{2} \cos 2 x\right)$

