Basic Forms of the Partial Fraction Decomposition (PFD)

I. When the denominator has the form:

$$(x-a)$$
 $(x-b)$ $(x-c)$ \cdots $(x-d)$ \leftarrow Distinct Linear Factors

Form: PFD =
$$\frac{A}{x-a} + \frac{B}{x-b} + \cdots + \frac{D}{x-d}$$

II. When the denominator has the form:

$$(\mathbf{x} - \mathbf{a})^k$$

Form: PFD =
$$\frac{A_1}{(x-a)^2} + \frac{A_2}{(x-a)^2} + \frac{A_3}{(x-a)^3} + \cdots + \frac{A_k}{(x-a)^k}$$

III. When the denominator has distinct non-factorable non-repeated quadratic factors of the form $x^2 + bx + c$:

Form: Each such factor requires a term of the form: $\frac{Ax + B}{x^2 + bx + c}$

IV. When the denominator is a power of a non-factorable quadratic factor $(x^2 + bx + c)^k$:

Form: PFD =
$$\frac{A_1x + B_1}{x^2 + bx + c} + \frac{A_2x + B_2}{(x^2 + bx + c)^2} + \cdots + \frac{A_kx + B_k}{(x^2 + bx + c)^k}$$

V. When the denominator factors completely into a combination of the above, these basic Forms string together to make the basic Form of the whole.