Finding the Partial Fraction Decomposition (PFD) of $\frac{P(x)}{Q(x)}$ when the $\operatorname{deg} \mathbf{P}(\mathbf{x})<\operatorname{deg} \mathbf{Q}(\mathbf{x}):$

1) Identify the Basic Form of the PFD (factor $\mathbf{Q (x)}$ as far as possible)
2) Write Equation: $\frac{P(x)}{Q(x)}=$ Basic Form
3) Multiply by $Q(x)$ and solve for the unknowns A, B, C, etc.

Example: Let $\frac{P(x)}{Q(x)}=\frac{2 x-17}{x^{2}-5 x+4}=\frac{2 x-17}{(x-1)(x-4)}$
$\frac{P(x)}{Q(x)}=\frac{2 x-17}{(x-1)(x-4)}=\frac{A}{(x-1)}+\frac{B}{(x-4)} \longleftarrow$ Basic Form

$$
\begin{aligned}
& \left.\mathbf{Q}(\mathbf{x})(---------)^{-}\right)=(--------\quad \mathbf{Q}(\mathbf{x}) \\
& (x-1)(x-4)\left(\frac{2 x-17}{(x-1)(x-4)}\right)=\left(\frac{A}{(x-1)}+\frac{B}{(x-4)}\right)(x-1)(x-4)
\end{aligned}
$$

Solve for A and B in : $\quad 2 x-17=A(x-4)+B(x-1)$
Set $\mathbf{x}=1: \quad 2-17=A(1-4)+B(1-1) \quad \rightarrow \quad-15=-3 A \quad \rightarrow \quad A=5$
Set $\mathbf{x}=4: \quad 8-17=A(4-4)+B(4-1) \quad \rightarrow \quad-9=3 B \quad \rightarrow \quad B=-3$

$$
\frac{2 x-17}{(x-1)(x-4)}=\frac{5}{(x-1)}+\frac{-3}{(x-4)}
$$

