SUGGESTED WORDINGS OF THE REQUIRED JUSTIFICATION

for Concluding C or D for a GEOMETRIC SERIES

Whenever you conclude that a Geometric Series is CONVERGENT,

you must write a justification as clear and complete as the following:

"The (GEOMETRIC) SERIES $\sum_{n=1}^{\infty} a_n$ is CONVERGENT because it is a GEOMETRIC series with COMMON RATIO $\mathbf{r} = \mathbf{k}$ and $-1 < \mathbf{k} < 1$." WORDING

For example, the series $\sum_{n=3}^{\infty} 6\left(\frac{1}{5}\right)^n$ is a geometric series with common ratio $r = \frac{1}{5}$ and first term $= \frac{6}{625}$

Since the common ratio r above is strictly between -1 and 1, the geometric series is a convergent series.

When making this conclusion, you must write a justification as clear and complete as the following:

"The SERIES
$$\sum_{n=3}^{\infty} 6\left(\frac{1}{5}\right)^n$$
 is CONVERGENT because it is a GEOMETRIC series
with COMMON RATIO $r = \frac{1}{5}$ and $-1 < \frac{1}{5} < 1$." **SUGGESTED**
WORDING

Similarly, whenever you conclude that a Geometric Series is DIVERGENT,

you must write a justification as clear and complete as the following:

"The (GEOMETRIC) SERIES
$$\sum_{n=1}^{\infty} a_n$$
 is DIVERGENT
because it is a GEOMETRIC series
with COMMON RATIO $\mathbf{r} = \mathbf{k}$ and $|\mathbf{k}| \ge 1$." WORDING