SUGGESTED WORDINGS OF THE REQUIRED JUSTIFICATION
 for Concluding C or \mathbf{D} for a GEOMETRIC SERIES

Whenever you conclude that a Geometric Series is CONVERGENT, you must write a justification as clear and complete as the following:
"The (GEOMETRIC) SERIES $\sum_{n=1}^{\infty} a_{n}$ is CONVERGENT because it is a GEOMETRIC series

$$
\text { with COMMON RATIO } \mathrm{r}=\mathrm{k} \text { and }-1<\mathrm{k}<1 . \text {. }
$$

SUGGESTED

WORDING

For example, the series $\sum_{n=3}^{\infty} 6\left(\frac{1}{5}\right)^{n}$ is a geometric series with common ratio $\mathrm{r}=\frac{1}{5}$ and first term $=\frac{6}{625}$

Since the common ratio r above is strictly between -1 and 1 , the geometric series is a convergent series.

When making this conclusion, you must write a justification as clear and complete as the following:
"The SERIES $\sum_{n=3}^{\infty} 6\left(\frac{1}{5}\right)^{n}$ is CONVERGENT because it is a GEOMETRIC series
with COMMON RATIO $\mathrm{r}=\frac{1}{5} \quad$ and $-1<\frac{1}{5}<1$."
SUGGESTED
WORDING

Similarly, whenever you conclude that a Geometric Series is DIVERGENT,
you must write a justification as clear and complete as the following:
"The (GEOMETRIC) SERIES $\sum_{n=1}^{\infty} a_{n}$ is DIVERGENT because it is a GEOMETRIC series

SUGGESTED

with COMMON RATIO $\quad \mathrm{r}=\mathrm{k} \quad$ and $|\mathrm{k}| \geq 1 . "$
WORDING

