Real Analysis Prelim Spring 2022

January 2022

Problem 1. Let \mathbb{Z} be a subset of \mathbb{R} with measure zero. Show that the set $A = \{x^2 : x \in \mathbb{Z}\}$ also has measure zero.

Problem 2. Let $f : \mathbb{R}^n \to [0, +\infty]$ a measurable function, denote the measure of set $\Omega \in \mathbb{R}^n$ by $|\Omega|$. Show that

- **a)** $|\{x \in \mathbb{R}^n : f(x) \ge k\}| \le \frac{1}{k} \int f.$
- **b)** If f is integrable, then $|\{x \in \mathbb{R}^n : f(x) = +\infty\}| = 0.$

Problem 3. Let f be of bounded variation on an interval [a, b]. If f = g + h, where g is absolutely continuous and h is singular, show that

$$\int_{a}^{b} \phi \, df = \int_{a}^{b} \phi \, f' dx + \int_{a}^{b} \phi \, dh \,, \tag{1}$$

for any continuous ϕ .

Problem 4. Let $\{f_k\}$ be a sequence of non negative measurable function defined on the measurable set $E \in \mathbb{R}^n$.

If $f_k \to f$ and $f_k \leq f$ a.e., show that $\int_E f_k \to \int_E f$.

Problem 5. Let $1 \le p, q \le \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$. Show that if $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$, then f * g is bounded and continuous function on \mathbb{R}^n .