The following three problems are weighted equally; two complete solutions (or a complete solution and two half-solutions) are required for a passing grade. A correct partial solution (in which it is clear exactly what was proven) is preferrable to a claimed full solution with errors. In Problem 3, each computation must be accompanied by a justification of the computation's correctness.

Throughout this exam, we say that the random variable $\xi$ is a coin flip if

$$
P(\xi=1)=P(\xi=-1)=\frac{1}{2} .
$$

## Problem 1

i) Show that for any random variable $X$, and any $s, t \geq 0$,

$$
P(X \geq t) \leq e^{-s t} E\left(e^{s X}\right)
$$

ii) Let $\xi_{1}, \ldots, \xi_{n}$ be independent coin flips and let $X_{n}=\sum_{i=1}^{n} \xi_{n}$. Prove that for any $t \geq 0$,

$$
P\left(X_{n} \geq t \sqrt{n}\right) \leq e^{-t^{2} / 2}
$$

## Problem 2

For random variables $X$ and $Y$, define

$$
d(X, Y)=\inf \{\epsilon \geq 0: P(|X-Y|>\epsilon) \leq \epsilon\}
$$

Prove that $d$ metrizes convergence in probability, in the sense that $X_{n} \rightarrow X$ in probability if and only if $d\left(X_{n}, X\right) \rightarrow 0$.

## Problem 3

Let $\xi_{1}, \xi_{2}, \ldots$ be i.i.d. coin flips. Let $X_{n}=\sum_{i=1}^{n} \xi_{n}$, and let

$$
T=\inf \left\{n \geq 4: \xi_{n}=-1 \text { and } \xi_{n-1}=\xi_{n-3}=1\right\}
$$

i) Compute $E\left(X_{T}\right)$.
ii) Compute $E\left(X_{T+1}\right)$.
iii) Compute $E\left(X_{T-1}\right)$.

