ALGEBRA PRELIMINARY EXAM: PART II

Problem 1

Let p and q be distinct primes. Set $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$.

- a) Describe extensions of \mathbb{F}_p of degree q (state the main results; no proofs required).
- b) Compute the number of irreducible polynomials in $\mathbb{F}_p[x]$ of degree q.

Problem 2

Let F be the splitting field of $(x^2 - 2)(x^2 - 3)$ over \mathbb{Q} .

- a) Determine the degree of F/\mathbb{Q} .
- b) Determine the Galois group $\operatorname{Gal}(F/\mathbb{Q})$ as an abstract group.
- c) Prove that F/\mathbb{Q} is a simple extension.
- d) Find an element $\alpha \in F$ such that $F = \mathbb{Q}(\alpha)$.

Problem 3

Let E be the splitting field of $x^3 - 5$ over \mathbb{Q} .

- a) Determine the Galois group $\operatorname{Gal}(E/\mathbb{Q})$ as an abstract group.
- b) Prove that $x^2 3$ is irreducible in E[x]. Hint: Use the Fundamental Theorem of Galois theory.

Date: January 15, 2021.