ALGEBRA PRELIMINARY EXAM: PART II

Problem 1

Let p and q be distinct primes. Set $\mathbb{F}_{p}:=\mathbb{Z} / p \mathbb{Z}$.
a) Describe extensions of \mathbb{F}_{p} of degree q (state the main results; no proofs required).
b) Compute the number of irreducible polynomials in $\mathbb{F}_{p}[x]$ of degree q.

Problem 2

Let F be the splitting field of $\left(x^{2}-2\right)\left(x^{2}-3\right)$ over \mathbb{Q}.
a) Determine the degree of F / \mathbb{Q}.
b) Determine the Galois group $\operatorname{Gal}(F / \mathbb{Q})$ as an abstract group.
c) Prove that F / \mathbb{Q} is a simple extension.
d) Find an element $\alpha \in F$ such that $F=\mathbb{Q}(\alpha)$.

Problem 3

Let E be the splitting field of $x^{3}-5$ over \mathbb{Q}.
a) Determine the Galois group $\operatorname{Gal}(E / \mathbb{Q})$ as an abstract group.
b) Prove that $x^{2}-3$ is irreducible in $E[x]$.

Hint: Use the Fundamental Theorem of Galois theory.

