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Abstract. The objective of this paper is to discuss the regularity
of viscosity solutions of time independent Hamilton-Jacobi Equa-
tions. We prove analogs of the KAM theorem, show stability of
the viscosity solutions and Mather sets under small perturbations
of the Hamiltonian.
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1. Introduction

The objective of this paper is to study the regularity and stabil-

ity under small perturbations of viscosity solutions of Hamilton-Jacobi

equations

(1) H(P +Dxu, x) = H(P ),

using a new set of ideas that combines dynamical systems techniques

with control theory and viscosity solutions methods. In (1), H(p, x) :

R
2n → R is a smooth Hamiltonian, strictly convex, and coercive in p

(lim|p|→∞
H(p,x)
|p| =∞), and Zn periodic in x (H(p, x+ k) = H(p, x) for

k ∈ Zn). Since Rn is the universal covering of the n-dimensional torus,

we identify H with its projection prH : Tn × Rn → R. By changing

conveniently the Hamiltonian we may take P = 0 and H(P ) = H,

which we will do throughout the paper to simplify the notation.
1
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In general, (1) does not admit global smooth solutions. The KAM

theorem deals with the case in which

(2) H(p, x) = H0(p) + εH1(p, x).

Under generic conditions it is possible to prove that for most values

of P and sufficiently small ε (1) admits a smooth solution that can be

approximated by a power series in ε [Arn89]. In this paper we will

prove analogous results for viscosity solutions of (1).

The outline of this paper is the following: in section 2 we review

basic facts concerning the connections between Mather measures and

viscosity solutions. A general reference on control theory and viscosity

solutions is [FS93]. The special results concerning viscosity solutions

of (1) can be found in [LPV88], [Con95], and [Con97]. The main ref-

erences on Mather’s theory are [Mat91], [Mat89a], [Mat89b], [Mn92],

and [Mn96]. The use of viscosity solutions to study Hamiltonian sys-

tems, and in particular Mather’s theory is discussed by Fathi [Fat97a],

[Fat97b], [Fat98a], [Fat98b], E [E99], and Jauslin, Kreiss and Moser

[JKM99] (for conservation laws in one dimension). Further develop-

ments and applications were considered in [EG99], [Gom00], [Gom01b].

In section ?? we discuss representation formulas for H and study

the behavior of H as a function of ε. We prove that H is Lipschitz in

ε, and depending only on properties of the unperturbed problem, we

show that H is differentiable with respect to ε.

In section 3 we obtain L2 estimates (with respect to Mather mea-

sures) on the differences Dxu
ε − Dxu (u and uε are solutions of (1)

for ε = 0, ε, respectively), as well as some perturbative results for the

expansion of uε is a power series in ε. Such results are an analog of

the KAM theorem for viscosity solutions. In particular they show (L2)

stability of the Mather sets.

These estimates are fairly general, and to prove finer results, in sec-

tions 4 we assume the additional hypothesis that the Mather measure

is uniquely ergodic. The main idea is that, like in KAM theory, a non-

resonance type condition should be imposed to prove stronger stability

results. This role is played by unique ergodicity of the Mather measure.

We show, in section 4, that uε is uniformly continuous in ε.
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2. Mather measures and viscosity solutions

The purpose of this section is to review some results concerning

viscosity solutions and Mather measures.

Theorem 1 (Lions, Papanicolaou, Varadhan). For each P ∈ Rn there

exists a number H(P ) and a periodic viscosity solution u of (1). The

solution u is Lipschitz, semiconcave, and H is a convex function of P .

BothH and the viscosity solutions of (1) encode the dynamics certain

trajectories (global minimizers, see [EG99]) of the Hamilton equations

(3) ẋ = DpH(p, x) ṗ = −DxH(p, x).

Let L, the Lagrangian, be the Legendre transform of H

L(x, v) = sup
v
−p · v −H(p, x).

This Lagrangian is defined on the tangent space of the torus (or when

convenient one considers its lifting to the universal covering Rn ×Rn).

Theorem 2 (Mather). For each P there exists a positive probability

measure µ (Mather measure) on Tn×Rn invariant under the dynamics

(3). This measure minimizes∫
L(x, v) + Pvdµ

over all such measures.

Several important properties of Mather measures can be described in

terms of viscosity solutions. Mather measures, as defined in the previ-

ous theorem, are supported in the tangent space of the torus - however

it is convenient to consider another measure on the cotangent space of

the torus induced by µ using the diffeomorphism v = −DpH(p, x). By

abuse of language we will call again Mather measure to such measure.

Theorem 3 (Fathi). Suppose µ is a Mather measure and let u any

solution of (1). Then µ is supported on the graph (x, P + Dxu). Fur-

thermore Dxu is Lipschitz on the support of µ.

The fact that the support of a Mather measure is a Lipschitz graph

was proven by Mather [Mat89b]. Therefore once it is known that µ

is supported on the graph (x, P + Dxu) the last part of the theorem

follows trivially. Similar statements can also be found in [E99] or, using

entropy solutions for conservation laws instead of viscosity solutions of

Hamilton-Jacobi equations, in [JKM99]. The next proposition gives
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more precise Lipschitz estimates on Dxu. and shows that even outside

the Mather set Dxu is Lipschitz.

Proposition 1. Suppose (x, p) is a point in the graph

G = {(x,Dxu(x)) : u is differentiable at x}.

Then for all t < 0 the solution (x(t), p(t)) of (3) with initial conditions

(x, p) belongs G. If for some T > 0, (x(T ), p(T )) ∈ G then for any y

such that Dxu(y) exists

|Dxu(x)−Dxu(y)| ≤ C|x− y|,

with a constant depending on T .

Proof. The first part of the theorem (invariance of the graph for

t < 0) is a consequence of the optimal control interpretation of viscos-

ity solutions [FS93] and the reader may find a proof, for instance in

[Gom01b] or [Gom00]. To prove the second part, let S be the set of

the points x such that Dxu exists and the solution of (3) with initial

conditions (x,Dxu) stays in G up to time t = T > 0. We claim that

|u(x+ y)− 2u(x) + u(x− y)| ≤ C(T )|y|2,

for all x ∈ S and all y ∈ Rn. Given this claim, the result follows from

the proof in ([EG99]), section 6. Part of the claim

u(x+ y)− 2u(x) + u(x− y) ≤ C|y|2

is just a consequence of semiconcavity of viscosity solutions, and the

constant C does not depend on T [FS93]. Thus it suffices to prove

u(x+ y)− 2u(x) + u(x− y) ≥ −C|y|2.

Let x(s), 0 ≤ s ≤ T , be a solution of (3). Set x = x(0), z = x(T ).

Observe that

u(x) =

∫ T

0

L(x(s), ẋ(s)) +Hds+ u(z)

and for any ψ

u(x) ≤
∫ T

0

L(x(s) + ψ, ẋ(s) + ψ̇(s)) +Hds+ u(z + ψ(T )).

Choose ψ(s) = ± y
T
s to get

u(x+ y) + u(x− y)− 2u(x) ≥ −C(T )|y|2.

�
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Note that C(T ) = O( 1
T

), as T → 0. Simple examples show that this

is sharp - as one would expect Dxu is not globally Lipschitz and the

Lipschitz constant depends on “how much time it takes to hit a shock”.

Let φ be a Lipschitz function. We need to define what Dxφ(x) means

in the support of a Mather measure. The problem is that although φ

is differentiable almost everywhere with respect to Lebesgue measure,

a measure µ may be supported exactly where the derivative does not

exist. However there is a natural definition of derivative that is conve-

nient for our purposes.

A function ψ : Rn → R
n is a version of Dxφ if the graph of ψ is

contained in the vertical convex hull of the closure of the graph of

Dxφ. More precisely if

ψ(x) ∈ Dxφ(x),

where

Dxφ(x) = co{p : p = lim
n→∞

Dxφ(xn), with xn → x, φ differentiable at xn}.

The next two propositions show that this definition is quite natural

and useful to our purposes:

Proposition 2. Assume that φ has the property that if xn → x and

φ is differentiable at x and at each xn then Dxφ(xn) → Dxφ(x). Fur-

thermore any version of Dxφ coincides with the derivative of φ at all

points where φ is differentiable.

Proof. The hypothesis on φ implies immediately that

Dxφ(x) = {Dxφ(x)},

if φ is differentiable at x. �
The solutions of (1) have this property but this is not true for general

Lipschitz functions.

Proposition 3. Suppose (x, p) is a point in the graph G.Let (x(t), p(t))

be a solution of (3) with initial conditions (x, p) If for some T > 0,

(x(T ), p(T )) ∈ G then for any y and any version Dxu(y)

|Dxu(x)−Dxu(y)| ≤ C|x− y|,

with a constant depending on T .

Proof. This follows from proposition 1 and from observing that | · |
is a convex function. �
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Since Mather measures µ are invariant under the dynamics (3) one

has for smooth functions φ∫
Tn×Rn

Dxφ(y)DpH(p, y, τ)dµ = 0.

We prove next that for Lipschitz functions φ it is possible to choose a

version of Dxφ such that the same identity holds.

Theorem 4. Let φ : Rn → R be a Lipschitz function and µ a Mather

measure. Then there exists a version of Dxφ such that∫
Tn×Rn

Dxφ(y)DpH(p, y, τ)dµ = 0.

Proof. Consider a generic point (x, p) in the support of µ and the

corresponding trajectory (x(t), p(t)) of (3) with initial condition (x, p).

Let Tn be a sequence converging to +∞. Through some subsequence

1

Tn

∫ Tn

0

ϕ(p(t), x(t))dt→
∫
Tn×Rn

ϕdµ,

for all µ-integrable, continuous, and periodic (in x) functions ϕ. Let

zn ∈ Rn be any sequence such that |zn| → 0. If ϕ is continuous and

does not depend on p then

1

Tn

∫ Tn

0

ϕ(zn + x(t))dt→
∫
Tn×Rn

ϕdµ.

Let φ be a Lipschitz function. Note that φ is differentiable almost

everywhere. Thus it is possible to choose zn → 0 such that, for each n,

Dxφ(zn+x(t)) is defined for almost every t. Now consider the sequence

of vector-valued measures ηn defined by∫
Tn×Rn

ζ(p, y)dηn =
1

Tn

∫ Tn

0

Dxφ(zn + x(t)) · ζ(p(t), x(t))dt,

for all vector valued smooth, and periodic in y, functions ζ. Since

Dxφ is bounded, we can extract subsequence, also denoted by ηn, that

converges weakly to a vector measure η.

Since η << µ, in the sense that for any set A, µ(A) = 0 implies that

the vector η(A) = 0. Therefore, by Radon-Nikodym theorem, we have

dη = ψdµ, for some L1(µ) function ψ. By standard techniques in weak

limits it is clear that for almost every x ∈ Tn the density ψ is in Dxφ,

so it is a version of Dxφ.
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Finally, to see that ∫
Tn×Rn

ψDpH(p, y)dµ = 0,

we just have to observe that∫
Tn×Rn

DpH(p, y)dηn = O(εn)

and so

0 =

∫
Tn×Rn

DpH(p, y)dη =

∫
Tn×Rn

ψDpH(p, y)dµ.

�
The Hamilton-Jacobi equation (1) has two unknowns H and u. In

the remaining of this section we recall some representation formulas for

H that do not involve solving (1). A classical result [LPV88] is that

H = − lim
α→0

inf
x(·)

α

∫ ∞
0

L(x, ẋ)e−αtdt,

with the infimum taken over all Lipschitz trajectories x(·). There are

two distinct formulas more convenient for our purposes - both will

be optimization problems - the first one, which makes a connection

between Mather’s problem and viscosity solutions, is

(4) H = − inf
µ

∫
Ldµ,

in which the measure µ is a generalized curve, i.e.∫
vDxφdµ = 0,

for all smooth φ. This expression for H has a dual formula that con-

sists in an L∞ calculus of variations problem. This result was first

proven in [CIPP98], and in [Gom00] (and a stochastic generalization

in [Gom01a]) using Legendre-Fenchel duality theory.

Theorem 5.

(5) H = inf
φ

sup
x
H(Dxφ, x),

where the infimum is taken over all periodic smooth functions φ.

An interesting observation about (5) is that this formula holds as

long as the equation (1) has a viscosity solution. However it is not

required that H be convex in p.
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Unfortunately this representation formula for H does not yield a

method to compute the viscosity solution u. A sequence of minimizers

un may or may not converge to a viscosity solution of (1).

Now we discuss the Euler-Lagrange equations for this problem.

Proposition 4. Suppose u is a smooth solution of (1) (and therefore

is a minimizer of (5)). Then

(6) sup
x
DpH(Dxu, x)Dxφ ≥ 0,

for all smooth and periodic φ.

Proof. Assume u solves (1) and therefore is a minimizer of (5). Then

for any φ smooth and periodic

H(Dxu+ εDxφ, x) ≤ H(Dxu, x) + εDpH(Dxu, x)Dxφ+O(ε2).

Therefore

sup
x
H(Dxu+ εDxφ, x) ≤ H + ε sup

x
DpH(Dxu, x)Dxφ+O(ε2).

Since

sup
x
H(Dxu+Dxφ, x) ≥ H

we must have

sup
x
DpH(Dxu, x)Dxφ ≥ 0,

for any φ smooth and periodic. �

3. L2
-Perturbation theory

In this section we assume the Hamiltonian to be

H(p, x; ε) = H0(p, x) + εH1(p, x),

as in (2). We assume that ε is always sufficiently small such that

H(p, x; ε) is strictly convex in p. The main objective is to obtain esti-

mates that show that the solution of the perturbed problem (ε 6= 0) is

close to the unperturbed problem (ε = 0). In particular we prove that

under appropriate hypothesis∫
|Dxu

ε −Dxu
0|2dν ≤ Cε2,

in which uε and u0 are solutions of (1) and ν is a Mather measure.

Then using the similar techniques we prove estimates on approximate

solutions using an iterative procedure. In spirit, this is close to the

KAM theory in which a solution of (1) is obtained as a formal power
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series. However, because viscosity solution theory guarantees the ex-

istence of a solution of (1) for any ε (as long as the Hamiltonian is

strictly convex) one can show that such a formal series is asymptotic

to the solution without having to worry about convergence or existence

of a solution.

We proceed as follows: first we study the dependence on ε of Hε.

Then we show that differentiability properties of Hε characterize L2

properties of the viscosity solutions. More precisely, twice differentia-

bility in ε of Hε implies Dxu
ε is L2 close (with respect to a Mather

measure) to Dxu. Finally we consider certain asymptotic approxima-

tions and prove L2 estimates between the solution and approximate

solutions of

(7) H(P +Dxu
ε, x; ε) = Hε(P ).

Proposition 5. Suppose H(p, x; ε) = H0(p, x) + εH1(p, x) with H0

strictly convex in p and H1 bounded with bounded derivatives. Then

for each P and ε sufficiently small there exists a unique Hε(P ) and a

viscosity solution uε of (7). Furthermore the function Hε(P ) is convex

in P and Lipschitz in ε.

Proof. The existence of Hε(P ) as well as convexity in P follows from

the results in [LPV88]. Thus it suffices to prove the Lipschitz property.

Observe that

|Hε1 −Hε2| ≤ |ε1 − ε2| sup
|p|≤R

sup
x
|H1(p, x)|

with R being an upper bound on the Lipschitz constant for the viscosity

solutions of (1). �
An interesting observation is that if H1(p, x) = V (x) (no dependence

on p) then H is a convex function of ε. To see this note that

L(x, v) = L0(x, v)− εV (x),

(L0 is the Legendre transform of H0) and from (4)

H = sup
µ
−
∫
Ldµ,

in which the supremum is taken over all probability measures, invariant

under (3). Since −L is a convex function of ε, and the supremum

of convex functions is convex, H is convex in ε and therefore twice

differentiable in ε almost everywhere.
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In the next theorem we compute an expansion of Hε close to ε = 0

in terms of Mather measures and viscosity solutions. In theorem 8 we

will show that such an expansion implies that regularity of Hε yields

regularity for the viscosity solutions.

Theorem 6. Let µ be a Mather measure corresponding to the unper-

turbed problem (ε = 0) and ν its projection in the x coordinates. Then

(8) Hε ≥ H0 + εH1 + γ

∫
|Dxu

ε −Dxu|2dν +O(ε2),

in which

H1 =

∫
H1(Dxu, x)dν,

u and uε are viscosity solutions of (1) for ε = 0, ε and Dxu
ε denotes a

version of Dxu
ε.

Proof. Observe that for any version of Dxu
ε

Hε ≥ H0(Dxu
ε, x) + εH1(Dxu

ε, x)

and so by strict convexity

Hε ≥H0 + εH1(Dxu, x)+

+DpH0(Dxu
ε −Dxu) + γ|Dxu

ε −Dxu|2 +O(ε2).

Integrate with respect to dν and use the fact that∫
DpH0(Dxu

ε −Dxu)dν = 0

to get

Hε ≥ H0 + εH1 + γ

∫
|Dxu

ε −Dxu|2dν.

�
This theorem implies that Hε has always non-empty subdifferential

at ε = 0 (Hε ≥ H0 + εH1 + O(ε2)). Therefore if Hε is differentiable

at ε = 0 its derivative is H1. Next we discuss a converse inequality

and prove that under suitable conditions Hε = H0 + εH1 +O(ε2), and

therefore Hε is differentiable at ε = 0.

Theorem 7. Assume u is a smooth solution of the unperturbed problem

corresponding to ε = 0. Let ν be, as in the previous theorem, the

projection of a Mather measure corresponding to ε = 0. Suppose there

exists a smooth function v and a number H1 such that

(9) DpH0(Dxu, x)Dxv +H1(Dxu, x) = H1.
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Then

(10) H1 =

∫
H1(Dxu, x)dν,

and

(11) Hε ≤ H0 + εH1 +O(ε2).

Proof. Let ν be the x projection of a Mather measure corresponding

to the unperturbed problem (ε = 0). First observe that (9) implies (10)

simply by integration with respect to dν. Recall that

Hε ≤ sup
x
H0(Dxu+ εDxv, x) + εH1(Dxu+ εDxv, x).

Since

H0(Dxu+ εDxv, x) + εH1(Dxu+ εDxv, x) = H0 + εH1 +O(ε2),

it follows

Hε ≤ H0 + εH1 +O(ε2),

as claimed. �
The next step in our program is to show that regularity ofHε actually

implies regularity for the viscosity solutions uε.

Theorem 8. Suppose Hε twice differentiable in ε. Then, for any

Mather measure µ (and corresponding projection ν) there exists a ver-

sion of Dxu
ε such that∫

|Dxu
ε −Dxu|2dν ≤ Cε2.

Proof. Observe that for any version of Dxu
ε

Hε ≥Hε(Dxu
ε, x) ≥

≥H0(Dxu, x) +DpH0(Dxu, x)(Dxu
ε −Dxu) + γ|Dxu

ε −Dxu|2+

+ εH1(Dxu, x)− Cε|Dxu
ε −Dxu|.

Integrating with respect to the projection ν and using theorem 4.

Hε −H0 − εH1 +O(ε2) ≥ γ

2

∫
|Dxu

ε −Dxu|2dν.

Since Hε is twice differentiable in ε (the remark after theorem 6 implies

that DεHε = H1 at ε = 0) we conclude∫
|Dxu

ε −Dxu|2dν ≤ Cε2.

�
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An alternate way to state the previous theorem is that for any y

sufficiently small (for instance |y| ≤ ε2) we have

(12) lim sup
T→∞

1

T

∫ T

0

|Dxu
ε(x(t) + y)−Dxu(x(t))|2dt ≤ Cε2,

provided Hε is twice differentiable at ε = 0 and x(t) is a orbit of (3)

for ε = 0 with initial conditions on the Mather set.

The remaining part of this section is dedicated to the study of high-

order methods. The idea is that given an integer n ≥ 0, by solving a

hierarchy of equations, one can compute a function ũε such that

(13) H0(Dxũ
ε, x)+εH1(Dxũ

ε, x) = H0+εH1+. . .+εn−1Hn−1+O(εn).

We call such a function an approximate solution of order n. To compute

ũε write

ũε = u+ εv1 + ε2v2 + . . .

The first equation is

H0(Dxu, x) = H0,

the second is

DpH0(Dxu, x)v1 +H1(Dxu, x) = H1

with H1 =
∫
H1(Dxu, x)dν, the remaining equations are

DpH0(Dxu, x)vk + fk(Dxu,Dxv1, . . . , Dxvk−1, x) = Hk

with Hk =
∫
fk(Dxu,Dxv1, . . . , Dxvk−1, x)dν, here fk is some function

that can be computed by assembling together the remaining terms of

order εk. Assuming that such equations can be solved we have imme-

diately

(14) Hε ≤ H0 + εH1 + . . . εn−1Hn−1 +O(εn),

as in theorem (7).

Let ν̃ be a measure defined by∫
φdν̃ = lim

T→∞

1

T

∫ T

0

φ(x(t))dt,

in which ẋ(t) = DpH0(Dxũ
ε, x) + εDpH1(Dxũ

ε, x) and φ is any con-

tinuous periodic function. We call ν̃ an approximate Mather measure.

Note that if ϕ is smooth and periodic then

(15)

∫
Dxϕ [DpH0(Dxũ

ε, x) + εDpH1(Dxũ
ε, x)] dν̃ = 0,
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and as before, if ϕ is Lipschitz then (15) holds for a version of Dxϕ.

Let uε be a solution of (1). Our objective is to estimate Dxu
ε−Dxũ

ε.

Theorem 9. Let uε be a solution of (1) and ũε an approximate solution

of order n. Then there exists a version of Dxu
ε such that

(16)

∫
|Dxu

ε −Dxũ
ε|2 dν̃ ≤ Cεn.

Proof. Observe that for any version of Dxu
ε and strict convexity of

H0

Hε ≥ H0(Dxu
ε, x) + εH1(Dxu

ε, x).

Thus

Hε ≥H0(Dxũ
ε, x) + εH1(Dxũ

ε, x)+(17)

+ [DpH0(Dxũ
ε, x) + εDpH1(Dxũ

ε, x)] (Dxu
ε −Dxũ

ε) +

+
γ

2
|Dxu

ε −Dxũ
ε|2 .

Integrate with respect to ν̃ and use the fact that∫
[DpH0(Dxũ

ε, x) + εDpH1(Dxũ
ε, x)] (Dxu

ε −Dxũ
ε) dν̃ = 0.

Then using (13) we get

Hε +O(εn) ≥ H0 + εH1 + . . .+ εn−1Hn−1 +
γ

2

∫
|Dxu

ε −Dxũ
ε|2 dν̃.

But then (14) implies (16). �

4. Uniform Continuity

The results on the previous section show that viscosity solutions of

(1) have some degree of regularity in ε. This apparently contradicts

the examples in which (1) does not have a unique solution (for fixed ε).

Obviously, adding any constant to a viscosity solution of (1) produces

another viscosity solution. Furthermore we know that even up to con-

stants the viscosity solutions are not unique. It is therefore surprising

that, under certain general conditions, we can prove that

uε(x)→ u(x)

uniformly on the support of an uniquely ergodic Mather measure (pro-

vided an appropriate constant is added to uε). This in particular im-

plies uniqueness of solution on each uniquely ergodic component of the

support of a Mather measure.
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Proposition 6. Suppose µ is a Mather measure and ν its projection.

Let εn → 0. Then there exists a point x in the support of ν and a

corresponding optimal trajectory x∗(t) such that for any T

sup
0≤t≤T

|u(x∗(t))− uεn(x∗(t))| → 0,

as n→∞, provided uεn(x) = u(x).

Proof. We start by proving an auxiliary lemma

Lemma 1. There exist a point (x, p) in the support of µ, and sequences

xn, x̃n → x, pn, p̃n → p, with (xn, pn) ∈ suppµ optimal pair for ε = 0,

and (x̃n, p̃n) optimal pairs for ε = εn.

Remark. The non-trivial point of the lemma is that the limits of pn
and p̃n are the same.

Proof. Take a generic point (x0, p0) in the support of µ. Let x∗(t)

be the optimal trajectory for ε = 0 with initial condition (x0, p0). Then

for all t > 0

H0(Dxu(x∗(t)), x∗(t)) = H0.

Also, for almost every y

H(Dxu
εn(x∗(t) + y), x∗(t)) = Hεn +O(|y|),

for almost every t. Choose yn with |yn| ≤ εn such that the previous

identity holds. By strict convexity of H in p and Lipschitz continuity

of Hε in ε

ẋ∗(t)ξ + θ|ξ|2 ≤ C|εn|,

where

ξ = [Dxu(x∗(t))−Dxu
εn(x∗(t) + yn)] ,

ẋ∗(t) = −DpH0(Dxu(x∗(t)), x∗(t)),

and θ > 0. Note that∣∣∣∣ 1

T

∫ T

0

ẋ∗(t)ξ

∣∣∣∣ ≤|u(x∗(0))− u(x∗(T ))|
T

+

+
|uεn(x∗(0) + yn)− uεn(x∗(T ) + yn)|

T
.

Therefore we may choose T (depending on n) such that∣∣∣∣ 1

T

∫ T

0

ẋ∗(t)ξ

∣∣∣∣ ≤ εn.
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Thus
1

T

∫ T

0

|Dxu(x∗(t))−Dxu
εn(x∗(t) + yn)|2 ≤ Cεn.

Choose 0 ≤ tn ≤ T for which

|Dxu(x∗(tn))−Dxu
εn(x∗(tn) + yn)|2 ≤ Cεn.

Let xn = x∗(tn), x̃n = x∗(tn) + yn, and

pn = P +Dxu(x∗(tn), P ) p̃n = Dxu
εn(x∗(tn) + yn).

By extracting a subsequence, if necessary, we may assume xn → x,

x̃n → x, etc.

To see that the lemma implies the proposition, let x∗n(t) be the op-

timal trajectory for ε = 0 with initial conditions (xn, pn). Similarly,

let x̃∗n(t) be the optimal trajectory for ε = εn with initial conditions

(x̃n, p̃n). Then

u(xn) =

∫ t

0

L0(x∗n, ẋ
∗
n) +H0ds+ u(x∗n(t), P ),

and

u(x̃n, Pn) =

∫ t

0

Lεn(x̃∗n, ˙̃x∗n) +Hεnds+ uεn(x̃∗n(t)).

Note that, as εn → 0, Lεn → L0 uniformly on compact sets (here Lε is

the Legendre transform of H = H0 + εH1). On 0 ≤ t ≤ T both x∗n and

x̃∗n converge uniformly, and, since by hypothesis,

u(xn), uεn(x̃n)→ u(x),

we conclude that

uεn(x̃∗n(t))− u(x∗n(t))→ 0

uniformly on 0 ≤ t ≤ T . Therefore

uεn(x∗(t))− u(x∗(t))→ 0

uniformly on 0 ≤ t ≤ T . �
Given a viscosity solution u of (1) consider the differential equation

(18) ẋ = −DpH(Dxu, x).

Given an ergodic Mather measure µ (and respective projection ν) as-

sociated with u, (18) restricted to supp(ν) defines a flow. We say that

the flow (18) is uniquely ergodic if there ν is the unique invariant prob-

ability measure with support contained in supp(ν).
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Theorem 10. Suppose µ is an ergodic Mather measure associated to

a viscosity solution u of (1) with ε = 0. Let ν denote the projection on

µ. Assume that the flow (18) restricted to supp(ν) is uniquely ergodic.

Then

uε(x)→ u(x),

as ε → 0, uniformly on the support of ν, provided that an appropriate

constant C(ε) is added to uε.

Proof. Fix κ > 0. We need to show that if n is sufficiently large

then

sup
x∈supp(ν)

|uεn(x)− u(x)| < κ.

Choose M such that ‖Dxu(x)‖, ‖Dxu
εn(x)‖ ≤ M . Let δ = κ

8M
. Cover

supp ν with finitely many balls Bi with radius ≤ δ. Choose (x, p) as in

the previous proposition. Let (x∗(t), p∗(t)) be the optimal trajectory for

ε = 0 with initial condition (x, p). Then there exists Tδ and 0 ≤ ti ≤ Tδ
such that xi = x∗(ti) ∈ Bi. Choose n sufficiently large such that

sup
0≤t≤Tδ

|u(x∗(t))− uεn(x∗(t))| ≤ κ

2
.

Then, for each y in Bi

|u(y)− uεn(y)| ≤ |u(y)− u(yi)|+ |u(yi)− uεn(yi)|+

+ |uεn(yi)− uεn(y)| ≤ 4Mδ +
κ

2
≤ κ.

�
Actually, the unique ergodicity hypothesis is not too restrictive since

by Mane’s results [Mn96] “most” Mather measures are uniquely ergodic

(in the sense that after small generic perturbations to the Lagrangian

the restricted flow (18) is uniquely ergodic).
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[Mn92] Ricardo Mañé. On the minimizing measures of Lagrangian dynamical
systems. Nonlinearity, 5(3):623–638, 1992.
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