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Abstract

An estimation of the difference between smoothing a composition of two functions
and composing their smoothings is given. The smoothing operator considered here
is defined by the convolution operator with a holomorphic kernel. It is also shown,
by means of an example, how apply the estimate given here to obtain finite differ-
entiable versions of theorems on conjugation of maps in non-perturbative settings.
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1 Introduction

It is known that finite differentiable functions can be approximated by analytic ones. One
way of obtaining approximating analytic functions is to use a smoothing operator [Kra83,
Mos70, Ste70, Zeh75]. Here we consider a smoothing operator defined by the convolution
operator with a holomorphic kernel. The main result of this note is an estimate for the
norm of the difference between smoothing a composition of two functions and composing
their smoothings. We also show how such an estimate can be used in some conjugation
problems when the involved functions are only finite differentiable.

The classification – under conjugacy – and the study of the existence of invariant
objects for a given dynamical system are important to understand the dynamics of the
complete system. Invariant objects and conjugating functions are often found solving
functional equations that involve the composition operator and whose unknowns are
homeomorphisms. Conjugation problems can be formulated in an abstract form as
generalised implicit function theorems [Mos66b, Zeh75, Ham82, Van02].

Frequently, in conjugation problems – or in problems concerning the existence of
invariant objects – the so-called ‘small divisors’ appear in the infinitesimal equations.
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These small divisors yield a reduction of the analyticity domain if the considered func-
tions are analytic and a loss of derivatives in the finite differentiable setting.

It turns out that, in certain cases, it is preferable to deal with reduction of the
analyticity domain than loss of differentiability. In particular, it is easier to prove
the existence of a solution of the functional equation when the involved functions are
analytic. Then, using an idea of Moser [Mos66b], one proves the existence of a solution in
the finite differentiable case by constructing a double sequence of approximate solutions:
the finite differentiable functions are first approximated by analytic ones, and then the
result for the analytic case is applied to the approximating functions.

We call attention to Chapter IV in [Her83] where the author describes a technique
to conjugate finite differentiable circle maps with constant type rotation number to the
rotation given by the rotation number. The Herman’s technique – different from Moser’s
– enables him to lose only one derivative.

It seems not straightforward a generalisation of the Herman’s technique to dimension
greater than one.

Since the composition operator does not commute with the convolution operator, in
the passage from the analytic to the finite differentiable case, is sometimes necessary
to estimate a norm of the difference between smoothing a composition of two functions
and composing their smoothings. This happens in certain non-perturbative conjugation
results where the main hypothesis is that an approximate solution of the problem is
known. Roughly speaking the proof of such results goes as follows: the problem is
written as finding zeros of a suitable functional equation defined in appropriate spaces
of functions. Assuming that we are given an approximate solution of the functional
equation and that the infinitesimal equations are approximately solvable – maybe with
some loss of differentiability. Then a modified Newton method is constructed to find
a true solution. It turns out that the method is convergent if both the initial error is
‘sufficiently’ small and the error on resolving the infinitesimal equations is ‘quadratic’.
We will refer to such proofs as ‘polishing’.1 Some results within this context are [SZ89,
CC97, dlLGJV05, dlL05, HdlL04b].

In this work we give an estimate of the supremum norm, computed on complex strips,
of the difference between smoothing a composition of two functions and composing their
smoothings. The estimation is given in terms of the order of differentiability of the
two functions (Theorem 1). We also show how this estimate can be used to obtain a
finite differentiable version, from an analytic one, of a non-perturbative result on the
conjugation of torus diffeomorphism (see Theorem 2 and Theorem 3 in Section 5 for
the formulation of, respectively, the finite differentiable and the analytic version of this
result).2

The procedure we use to obtain a finite differentiable version of Theorem 3 is essen-
tially the same used in the proof of Theorem 7.1.1 in [Van02] (which is a generalisation
of Theorem 2.1 in [Zeh75]), and it consists of the following steps (see Section 5 for more
details):

1This type of proofs provides the basis for algorithms to compute invariant objects c.f. [HdlL04a] and
at the same time they can be used to perform computed assisted proofs c.f. [CC03].

2We will not give here any proof of Theorem 3, a polishing proof of it will appear in a future
paper [GE05] .
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Step 0: Write the conjugacy problem as a functional equation in appropriate function
spaces.

Step 1: Smooth both the torus map and the approximate conjugation (which are
assumed to be finite differentiable). Apply the estimate in Theorem 1 to obtain
an analytic approximate solution of the functional equation.

Step 2: Construct a double approximation following the proof of Theorem 2.1 in [Zeh75]
(see also [Mos62, Jac72]).

For readers who are familiar with [Zeh75] we remark that Theorem 1, (which enables us
to perform Step 1) proves that the composition operator satisfies the hypothesis F.S4
of Theorem 7.1.1 in [Van02] which improves the condition in Theorem 2.1 in [Zeh75]:
the initial solution has to be in the biggest spaces X1 × Y1, see Theorem 2.1 in [Zeh75]
and Remark 4.3.8 in [Van02].

Conjugation of torus maps to rigid rotations is a special case of problems involving
the functional equation

F (f, g, ϕ) = 0 , (1)

where
F (f, g, ϕ) def= f ◦ g − g ◦ ϕ . (2)

The main idea in Step 1 of the above procedure is the following. Assume that f0, g0

and ϕ0 are finite differentiable functions which satisfies (1) approximately. Then using
estimate given in Theorem 1 one obtains an analytic approximate solution of (1).

We emphasise that in the case that ϕ in (2) is a fixed rigid rotation on the torus, if g0

is polynomial, then it is not necessary to use an estimate like that in Theorem 1 to obtain
an analytic approximate solution of (1) from f0, and g0. For example, perturbative
results on conjugacy problems [Arn65, Mos62, Zeh76] satisfy this property, because
one can assume g0 to be the identity. Although, in certain non-perturbative cases
it is possible to assume that g0 is the identity map e.g. [SZ89], in general imposing
such condition weakens the obtained results. For example, the conjugation problem
considered in Section 5 and that considered in [dlLGE05] where the authors use the
scheme described above to give a finite differentiable version of a non-perturbative result
on the existence of maximal dimensional invariant tori for exact symplectic maps. 3

This note is organised as follows. In Section 2 we define the smoothing operator and
state Theorem 1 which gives an estimate the norm of the difference between smoothing
a composition of two functions and composing their smoothings. Section 3 contains
some quantitative properties of the smoothing operator. In Section 4 we apply the
results of Section 3, to prove Theorem 1. Finally, in Section 5 we discuss an application
of the estimate given in Theorem 1 to conjugations of torus maps to rigid rotations
(Theorem 2).

3 The analytic version of this result can be found in [dlLGJV05].
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2 Smoothing and composition

We begin by defining the function spaces we work with. Let Z+ denote the set of
non-negative integers.

Definition 1. C0(Rd) denotes the space of functions f : Rd → R such that

|f |C0
def= sup

x∈Rd

|f(x)| < ∞ .

Let ` = p + α, with p ∈ Z+ and 0 < α < 1. Define the Hölder space C`(Rd) to be the
set of all functions f : Rd → R with continuous derivatives up to order p for which the
norm

|f |C`(Rd)
def= sup

x∈Rd

|k|≤p

{
|Dkf(x)|

}
+ sup

x,y∈Rd,x6=y
|k|=p

{
|Dkf(x)−Dkf(y)|

|x− y|α

}
< ∞ .

Following [Mos66b, Zeh75, Sal04] we consider a linear smoothing operator taking func-
tions in C`(Rd, R) into real entire functions which are bounded in complex strips. For
ρ > 0, let T d

ρ denote the complex strip

T d
ρ = {x + iy ∈ Cd : |yj | ≤ ρ, 1 ≤ j ≤ d}.

Definition 2. Let ` = p + α, with p ∈ Z+ and 0 ≤ α < 1. Define the Banach space
A(ρ,C`, d) to be the set of all holomorphic functions f : T d

ρ ⊂ Cd → C which are real
valued on Rd (i.e. ¯f(x) = f(x̄) for all x ∈ Rd) and such that the norm

|f |ρ,C`
def= sup

x∈Uρ
|k|≤p

{
|Dkf(x)|

}
+ sup

x,y∈T d
ρ ,x6=y

|k|=p

{
|Dkf(x)−Dkf(y)|

|x− y|α

}
< ∞ .

We denote by |·|ρ the norm of A(ρ,C0, d).

For a matrix or vector valued-function G with components Gi,j in either C`(Rd) or
in A(ρ,C`, d) we use the norm |G|C`(Rd)

def= max
i,j

|Gi,j |C`(Rd) or |G|ρ,C`
def= max

i,j
|Gi,j |ρ,C` ,

respectively. The space of functions g = (g1, . . . , gd) : Rn → Rd such that gi ∈ C`(Rn),
for i = 1, . . . , d, is denoted by C`(Rn, Rd). Now we define the smoothing operator St.

Definition 3. Let d be a natural number and 0 < s ≤ 1. Choose u : Rd → R to be C∞,
even, identically equal to 1 in a neighbourhood of the origin and with support contained in
the ball with centre in the origin and radius s. Let û : Rd → R be the Fourier transform
of u and denote by s the holomorphic continuation of û . Define linear operator St as

St[f ](z) = td
∫

Rd

s(t(y − z))f(y)dy for f ∈ C0(Rd). (3)
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Applying obvious modifications Definition 3 can be extended to a linear operator
on C0(Rn, Rd) and on C0(Rn). In the sequel these operators are denoted by the same
symbol St

In Section 3 we state some properties of St. From Definition 3 one obtains the
following remark.

Remark 1.

1. St takes functions in C0(Rd) to the space of entire functions on Cd.

2. Using the change of variables ξ = t Re (y − z) = ty − t Re (z), one has

St[f ](z) =
∫

Rd

s(ξ − it Im (z))f(Re (z) + ξ/t)dξ. (4)

3. St maps periodic functions to periodic functions.

4. St commutes with constant coefficients differential operators.

5. The definition of St can be extended to functions defined on subsets of Rd which
are connected and have sufficiently regular boundary.

6. The definition of the linear operator St, given in (3), depends on d. However, we
do not include this dependence in the notation.

7. St[f ] is the convolution st ∗ f where st(z) = tds(tz).

The following theorem provides an estimate for the norm of the difference between
the composition of the smoothing and the smoothing of the composition.

Theorem 1. Let `1, `2 > 1 with `1, `2 /∈ N. For f ∈ C`1(Rd) and g ∈ C`2(Rn, Rd), then
the composition f ◦ g belongs to C`(Rn) with ` = min(`1, `2).

Moreover, given two real numbers β > 0, 0 ≤ µ < ` − 1, there exist two positive
constants κ = κ(n, d, `1, `2, β, µ) and t∗ = t∗(n, `2, β) such that for every f ∈ C`1(Rd),
and g ∈ C`2(Rn, Rd), with |Dg|C0(Rn) < β, the following holds 4

|St[f ] ◦ St[g]− St[f ◦ g] |t−1 ≤ κ |f |C`1 (Rd) t−µ , ∀ t ≥ t∗ . (5)

Remark 2. Theorem 1 is stated only for Hölder functions, with `1, `2 not integer. A
natural question is whether it is possible to give an estimate, similar to that given in (5),
for Λ`-functions – briefly, Λ`-functions coincide with Hölder functions when ` /∈ Z
and with the space of Zygmund functions when ` ∈ Z.5 However the composition of
Zygmund functions will not always result in another Zygmund function, for example
f(x) = x log (|x|) ∈ Λ1 but f2 6∈ Λ1.

Remark 3. Let T def= R/Z and let C `(Td) be the subset of functions in C `(Rd) which
are Zd-periodic. Denote by C `(Td, Rd) the space of d-dimensional vector functions with
coordinates in C `(Td). We remark that Theorem 1 also holds for the space functions
C`(Td, Rd). See sections 3 and 5.

4|·|t−1 denotes the supremum norm on the complex strip of width t−1, see Definition 2.
5For a definition of Λ`-functions see, for example, Section 4 of Chapter V of [Ste70] or [Kra83].
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3 Some properties of St

In the present section we give some properties of the operator St, defined in (3), that
will be the key to establish the necessary estimates to prove Theorem 1. Throughout
this section ` denotes a positive non integer number. Let us start with some remarks
on St.

Remark 4.

1. St acts as the identity on polynomials: for any polynomial P : Rd → R

St[P ] = P.

2. Assume that f ∈ C0(Rd) admits a Fourier series expansion

f(x) =
∑
k∈Zd

fk e−2iπk·x .

Then
St[f ](z) =

∑
k∈Zd

u(k/t)fk e2πik·z ,

where u is as in Definition 3.

The following proposition ensures that the operator St is an analytic smoothing operator,
for a proof see Lemma 2.1 in [Zeh75].

Proposition 5. There exists a constant κ1 = κ1(d, `) such that

1. |(St − 1)[f ]|C0(Rd) ≤ κ1 ‖f‖C`(Rd) t−` , for f ∈ C`(Rd).

2. |St[f ] |t−1 ≤ κ1 |f |C0(Rd), for f ∈ C0(Rd).

3. |(Sτ − St)[f ] | τ−1 ≤ κ1 |f |C`(Rd) t−` , for f ∈ C`(Rd), with τ ≥ t ≥ 1

Using the fact that St commutes with constant coefficients differential operators one
proves the following (see Lemma 3 in [Sal04]).

Proposition 6. Assume that f ∈ C`(Rd). Then there exists a constant κ2 = κ2(d, `)
such that for any α ∈ Zd

+, |α|1 ≤ `, and | Im (z) | ≤ t−1 the following inequality holds∣∣∣∣∣∣Dα ( St[f ]) (z) −
∑

|k|1≤`−|α|1

1
k !

Dk+α f(Re (z)) (i Im (z))k

∣∣∣∣∣∣ ≤ κ2 |f |C`(Rd) t−(`−|α |1) ,

(6)
and for τ ≥ t ≥ 1

|Dα St[f ]−Dα Sτ [f ]| τ−1 ≤ κ2 |f |C`(Rd) t−(`−|α |1) .

In particular, for analytic functions we have the following estimate.

6



Proposition 7. Assume that f ∈ A(t−1, C`, d). Then there exists a constant κ3 =
κ3(d, `) depending on ` such that

|(St − 1)[f ] |t−1 ≤ κ3 |f |t−1,C` t−`.

Proof. From inequality (6) in Proposition 6, one has for | Im (z) | ≤ t−1

|St[f ](z) − P`(Re (z) , i Im (z)) | ≤ κ2 |f |C`(Rd) t−` ,

where
P`(Re (z) , i Im (z)) =

∑
|k|1≤`

1
k !

Dk f(Re (z)) (i Im (z))k.

Moreover, from the Taylor Theorem we have

| f(z) − P`(Re (z) , i Im (z)) | ≤ c |f |t−1,C` | Im (z) |` ,

for some constant c. Therefore,

|(St − 1)[f ]|t−1 ≤ κ3 |f |t−1,C` t−` .

One important property of the smoothing operator St is that we know an estimate for
the norm of St[f ] on the complex strip T d

t−1 (this is given by part 2 of Proposition 5).
However, we need more accurate estimates which we provide in the Lemma 8. Sim-
ilar estimates for a different smoothing operator are given in the proof of Lemma 2
in [Mos66b].

Lemma 8. Let s be as in Definition 3. Given nonnegative constants r, C and ` > 1
there exist positive constants κ4 = κ4(d, `, C), κ5 = κ5(d, `), and κ6 = κ6(d, `, C, r), such
that for all t ≥ 1 with

0 < ρ(t) def=(s t)−1(C + r log(t)) ≤ 1 (7)

the following holds

1. |S2t[f ]− St[f ] |ρ(t) ≤ κ4 |f |C`(Rd) t−`+2 r, f ∈ C`(Rd)

2. If f ∈ C`(Rd) and k is such that 2k ≤ t < 2k+1, then

|St[f ]− S2k [f ] |ρ(t) ≤ κ4 |f |C`(Rd) 2−k(`−r)+r .

3. | (1− St) [ St[f ] ] |ρ(t) ≤ κ5 |f |C`(Rd) t−`+r , f ∈ C`(Rd)

4. |St[f ] |ρ(t) ≤ κ4 |f |C0(Rd) tr, f ∈ C0(Rd)

5. If f ∈ C`(Rd), ` > 2 r, and t is sufficiently large then

|St[f ] |ρ(t) ≤ κ6 |f |C`(Rd) .
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In the proof Lemma 8 the following well known estimate is used.

Lemma 9. Let s and s be as in Definition 3. For any m and N there exists a constant
c = c(m,N) > 0 such that if |α|1 ≤ m then

|Dαs(z)| ≤ c (1 + |Re (z) |)−N es | Im(z)| .

Proof of Lemma 8 . We follow the ideas given in the proof of Lemma 2.1 in [Zeh75]
(see also [Sal04, Mos66b]). Expand the function f ∈ C`(Rd) in Taylor series

f(x + η) = Pp(x, η) + R(x, η),

where
Pp(x, η) =

∑
k∈Zm

+

|k|1≤p

1
k !

Dk f(x) ηk .

and R is the integral remainder. Applying the Taylor series to f(Re (z) + ξ/t) in (4)
and using that St acts as the identity on polynomials one obtains

St[f ](z) = Pp(Re (z) , i Im (z)) + R̂f (z, t), (8)

where

R̂f (z, t) =
∫

s (ξ − i t Im (z)) R(Re (z) , ξ/t) d ξ. (9)

From the Taylor Theorem, one has

|R(Re (z) , ξ/t)| ≤ c |f |C`(Rd) |ξ/t|` ,

where c = c(d, `). Then from (9) we have

|R̂f (z, t)| ≤ t−` |f |C`(Rd) φ`(t Im (z)) , (10)

where
φ`(η) def= c

∫
Rd

|s(ξ − iη)| |ξ|` dξ , (11)

The key point is to bound φ`(t Im (z)) in (10). This is achieved by Lemma 9. Indeed,
fixing N > 0 and α = 0, Lemma 9 implies

φ`(t Im (z)) = c

∫
Rd

|s(ξ − i t Im (z))| |ξ| ` dξ

≤ c es |t Im(z)|
∫

Rd

|ξ| `

(1 + |ξ|)N
dξ.

Hence

|φ`(t Im (z))| ≤ c es t | Im(z)|
∫

Rd

|ξ|`

(1 + |ξ|)N
dξ. (12)
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We first prove part 1 of Lemma 8. Notice that

S2 t[f ](z) = Pp(Re (z) , i Im (z)) + R̂f (z, 2 t) .

Therefore, if | Im (z) | ≤ ρ(t), using (10) and (12) one obtains

|(S2 t[f ]− St[f ] )(z)| ≤ |R̂f (z, 2t)|+ |R̂f (z, t)|
≤ t−` |f |C`(Rd) [φ`(2t Im (z)) + φ`(t Im (z)) ]

≤ κ̂4 t−`+2r |f |C`(Rd) ,

with κ̂4
def= 2c e2 C

∫
Rd

|ξ|`
(1+|ξ|)N dξ. This proves part 1.

Let us prove part 2 of Lemma 8 Let k be a positive integer such that 2k ≤ t < 2k+1.
From equalities (8), (10), and (12) we have for | Im (z) | < ρ(t)

|St[f ](z)− S2k [f ](z)| = |R̂f (z, t) + R̂f (z, 2k) |

≤ |f |C`(Rd)

(
t−` + 2−k`

)
φ(t Im (z))

≤ |f |C`(Rd) 2−k ` κ̂4 tr

≤ κ̂4 |f |C`(Rd) 2−k(`−r)+r .

This proves 2.

Now we prove part 3 of Lemma 8. From equality (4) we have

(1− St)[St[f ] ](z) =
∫

Rd

s(ξ − it Im (z)) (f(Re (z) + ξ/t)− St[f ](Re (z) + ξ/t)) dξ .

(13)

From equality (8) we have for x ∈ Rd

St[f ](x) = Pp(x, 0) + R̂f (x, t) = f(x) + R̂f (x, t)

Then using (13), (10) and (12) one obtains for | Im (z) | < ρ(t)

|(1− St)[St[f ] ](z)| =
∣∣∣∣∫

Rd

s(ξ − it Im (z)) R̂f (Re (z) + ξ/t, t)dξ

∣∣∣∣
≤ t−` |f |C`(Rd) φ`(0)φ0(t Im (z))

≤ κ5 |f |C`(Rd) t−`+r,

and this proves part 3.

Next we consider part 4 of Lemma 8. From (4) and (11) we have for f ∈ C0(Rd)
and | Im (z) | < ρ(t)

|St[f ](z)| ≤ |f |C0(Rd) c−1φ0(t Im (z))

≤ |f |C0(Rd) t r

(
eC

∫
Rd

1

(1 + |ξ|)N
dξ

)
≤ κ4 |f |C0(Rd) t r .
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Finally, we prove part 5 of Lemma 8. Let k be such that 2k ≤ t < 2k+1, since ρ(t)
goes to zero as t goes to infinity, we can assume that t is is sufficiently large so that
ρ(2i) ≥ ρ(t) for all i = 0, . . . , k. Then, using part 1 and part 2 of Lemma 8 one has

|St[f ]|ρ(t) ≤ |St[f ]− S2k [f ]|ρ(t) +
k∑

j=2

|S2j [f ]− S2j−1 [f ] |ρ(2j−1) + |S1[f ] |ρ(1)

≤ κ4 |f |C`(Rd) 2−k(`−r)+r + κ4 |f |C`(Rd)

k−1∑
j=0

2−j(`−2r) + |S1[f ] |ρ(1)

≤ 2r κ4 |f |C`(Rd)

∞∑
j=0

2−j(`−2r) + |S1[f ] |ρ(1)

≤ (κ̂4 + κ1) |f |C`(Rd) ,

where we have used that ` > 2r. This proves part 5, and finishes the proof of Lemma 8.

Proposition 10. Let C be non negative constant, r > 0, and let κ4 be as in Lemma 8.
For each f ∈ C`(Rd) and 0 ≤ µ < `, there exists a constant and κ 7 = κ 7(d, `, µ, r, C)
such that if t ≥ e1/(s r), and t−1(C + r log(t)) ≤ 1 then the following hold

1. |S2t[f ]− St[f ] |(s t)−1C, Cµ ≤ κ4 |f |C`(Rd) t−`+µ+2 r .

2. If k is such that 2k ≤ t < 2k+1, then

|St[f ]− S2k [f ] |(s t)−1C, Cµ ≤ κ4 |f |C`(Rd) 2−k(`−µ−r)+r+µ.

3. If ` > 2 r + µ, then |St[f ] |(st)−1C, Cµ ≤ κ 7 |f |X`
0

.

Proof. This is a consequence of Cauchy’s inequalities and Lemma 8. Indeed, if t ≥
e1/(s r), then we have

|S2t[f ]− St[f ] |s t−1C, Cµ ≤ (s t−1r log t)−µ |S2t[f ]− St[f ] |s t−1(C+r log(t))

≤ κ4 |f |C`(Rd) tµ−`+2 r .

Similarly, if k is such that 2k ≤ t < 2k+1, then

|St[f ]− S2k [f ] |t−1 C, Cµ ≤ (s t−1r log t)−µ |St[f ]− S2k [f ] |s t−1(C+r log(t))

≤ 2r+µ κ4 |f |C`(Rd) 2−k(`−µ−r) .

Finally, assume that ` > 2 r + µ and let k be such that 2k ≤ t < 2k+1, then Cauchy’s
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inequalities and parts 1 and 2 of Proposition 10 imply

|St[f ]|t−1C, Cµ ≤ |St[f ]− S2k [f ]|t−1C, Cµ +
k∑

j=2

|S2j [f ]− S2j−1 [f ] |2−jC, Cµ + |S1[f ] |t−1C, Cµ

≤ κ̃6 |f |C`(Rd)

k∑
j=0

2−j(`−2 r−µ) +
(
C − Ct−1

)−µ |S1[f ] |C

≤ κ̃6 |f |C`(Rd)

∞∑
j=0

2−j(`−2 r−µ) + C−µ
(
1− t−1

)µ |S1[f ] |C

≤ κ6 |f |C`(Rd) .

Remark 11. Take r ∈ (0, 1) in Proposition 10. Then part 3 in Proposition 10 establishes
that for any C > 0, 0 < µ < ` − 2 r , and t satisfying (s t)−1 (C + log(tr)) ≤ 1 and
t ≥ e1/(s r) the analytic function St[f ] belongs to A(C(s t)−1, Cµ, d), and moreover

|St[f ] |(s t)−1C, Cµ ≤ κ7 |f |X`
0

,

for some constant κ7 depending on d, `, µ, r, and C.

Notice that for any f ∈ C`(Rd), St[f ] is an entire function. For any f ∈ C`(Rd), and
that we know bounds of St[f ] on complex strips (see Proposition 5 and Remark 11).
This enables us to bound the norm of the imaginary part of St[f ] in the complex strip
T d

t−1 as follows.

Lemma 12. Assume f ∈ C`(Rd), with ` > 1. Then for any t ≥ 1

|Im (St[f ] )|t−1 ≤ t−1 |DSt[f ] |t−1 .

Proof. For any function satisfying g(z) = g(z̄), we have

Im (g(z)) =
1
2 i

(g(ξ(1, z))− g(ξ(0, z))) .

were ξ(t, z) = z̄ + t(z − z̄). Then, applying the Mean Value Theorem we have

| Im (g(z)) | ≤ 1
2

∣∣∣ ∫ 1

0

d

dt
(g(ξ(t, z))) dt

∣∣∣ ≤ | Im (z) | |Dg(z)|.

4 Proof of Theorem 1

Throughout this section we assume that `1, `2 > 1 are positive non integer numbers and
`

def= min(`1, `2). Let us start with some properties of the composition operator.

Proposition 13.
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1. If f ∈ C`1(Rd) and g ∈ C`2(Rn, Rd), the composition f ◦g is an element of C`(Rn)
with ` = min(`1, `2).

2. Given C ≥ 1, f ∈ A(ρ′, C0, d), and ρ such that ρ C ≤ ρ′, then for any g ∈[
A(ρ,C0, n)

]d with |Dg|ρ ≤ C the following holds

|f ◦ g|ρ ≤ |f |C ρ ≤ |f |ρ′ .

3. Given C ≥ 1, f ∈ A(ρ′, Cµ, d), with µ > 1, and ρ such that ρ C ≤ ρ′, then for any
g ∈ [A(ρ,Cµ, n)]d with |Dg|ρ ≤ C the following holds

|f ◦ g|ρ ,Cµ ≤ κ8 |f |C ρ ,Cµ (1 + |g|µρ,Cµ)

≤ κ8 |f |ρ′ ,Cµ (1 + |g|µρ,Cµ) ,
(14)

for some constant κ8 = κ8(d, µ).

4. Given 0 < α < β < 1, and f : Rd → R ∈ C1+β, for every g1 : Rn → Rd ∈ C1+α

there exists a δ > 0 such that if g2 : Rn → Rd ∈ C1+α with |g1 − g2|C0(Rn) < δ,
then

|f ◦ g1 − f ◦ g2|C0(Rn) ≤ κ9 |f |C1(Rd) |g1 − g2|C0(Rn) , (15)

where κ9 is a constant.

Proof. 2 is straightforward. A proof of 1, 3, and 4 can be found in [dlLO99]. We
just remark that 3 follows from Theorem 4.3 in [dlLO99] because complex strips are
compensated domains.

We now prove Theorem 1. Let f ∈ C`1(Rd) and g ∈ C`2(Rn, Rd). In order to prove
inequality (5) we decompose St[f ] ◦ St[g]− St[f ◦ g] as follows

St[f ] ◦ St[g]− St[f ◦ g] = St[f ] ◦ St[g]− St[ St[f ] ◦ St[g] ] +
+ St [St[f ] ◦ St[g]− St[f ] ◦ g ] +
+ St [ St[f ] ◦ g − f ◦ g ] .

(16)

It is easy to estimate the second and the third terms on the right hand side of (16).
Indeed, from part 1 of Proposition 5 one has

|(St − 1)[g]|C0(Rn) ≤ κ1(n, `2) |g|C`2 (Rn) t−`2 .

Then there exists t∗ = t∗(n, `2, |g|C`2 (Rn)) such that for t ≥ t∗

|St [ St[f ] ◦ St[g]− St[f ] ◦ g ]|t−1 ≤ κ1(n, `) |St[f ] ◦ St[g]− St[f ] ◦ g|C0(Rn)

≤ κ1(n, `) κ9 |St[f ]|C1(Rn) |(St − 1)[g]|C0(Rn)

≤ κ10 |f |C`1 (Rd) |g|C`2 (Rn) t−`2 ,

where the first inequality follows from part 2 of Proposition 5, the second from (15),
and in the third inequality we have used that St commutes with the derivate operator
to bound |St[f ]|C1 .

12



Similarly, for the fourth term on the right hand side of (16) we have the following
estimate

|St [St[f ] ◦ g − f ◦ g ] |t−1 ≤ κ1(n, `) |St[f ] ◦ g − f ◦ g |C0(Rn)

≤ κ1(n, `) |(St − 1)[f ] |C0(Rd)

≤ κ11 |f |C`1 (Rd) t−`1 .

Therefore, for t ≥ t∗ = t∗(n, `2, |g|C`2 (Rn))

|St [St[f ] ◦ St[g]− St[f ] ◦ g ]|t−1 ≤ κ10 |f |C`1 (Rd) |g|C`2 (Rn) t−` , (17)

and
|St [St[f ] ◦ g − f ◦ g ] |t−1 ≤ κ11 |f |C`1 (Rd) t−` , (18)

where ` = min(`1, `2), and κ10 = κ10(d, n, `1, `2), κ11 = κ11(d, n, `1, `2) are constants.

Hence in order to prove inequality (5) it is enough to bound the first two terms on
the right hand side of (16). That is

St[f ] ◦ St[g]− St[ St[f ] ◦ St[g] ] = (1− St) (St[f ] ◦ St[g]) ,

This is achieved by the following two lemmas.

Lemma 14. Given β > 0 and 0 ≤ µ < `−1 there exist two constants t̂ = t̂(n, `2, β) > 1
and κ12 = κ12(n, d, `1, `2, β, µ) such that for any f ∈ C`1(Rd), g ∈ C`2(Rn, Rd), with
|Dg|C0(Rn) < β, and t ≥ t̂ the composition St[f ] ◦ St[g] belongs to A(t−1, Cµ, n) and

|St[f ] ◦ St[g] |t−1, Cµ ≤ κ12 |f |C`1 (Rd) .

Proof. From Lemma 12 and part 2 of Proposition 5 we have that there exists a constant
c = c(n, `2) such that

|Im (St[g])|t−1 ≤ |DSt[g] |t−1 t−1

≤ |St[Dg] |t−1 t−1

≤ κ1(n, `1 − 1) |Dg |C0(Rn) t−1

≤ c β t−1 .

Therefore, if C
def= c βs , then from Remark 11 we have that if t̂ satisfies

t̂ ≥ e2/s ,
(
s t̂
)−1

(
C + log

(
t̂1/2
))

≤ 1

and 0 ≤ µ < `− 1 then St[g] ∈
[
A(t−1, Cµ, n)

] d and St[f ] ∈ A(C (s t)−1, Cµ, d), for any
t ≥ t̂. Thus from (14) one obtains

|St[f ] ◦ St[g] |t−1, Cµ ≤ κ8

(
1 + |St[g] |µ

t−1, Cµ

)
|St[f ] ||Im(St[g])|t−1 ,Cµ

≤ κ8

(
1 + |St[g] |µ

t−1, Cµ

)
|St[f ] |t−1 C ,Cµ

≤ κ8 κ7

[
1 +

(
κ7 |g|C`2 (Rn)

)µ ]
|f |C`1 (Rd)

where we have used Remark 11 to obtain the last inequality.
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Lemma 15. Given β > 0 and 0 ≤ µ < `−1 there exist two constants t̂ = t̂(n, `2, β) > 1
and κ13 = κ13(n, d, `1, `2, β, µ) such that for any f ∈ C`1(Rd), g ∈ C`2(Rn, Rd), with
|Dg|C0(Rn) < β, the following holds

| (1− St) (St[f ] ◦ St[g]) |t−1 ≤ κ13 |f |C`(Rd) t−µ , ∀ t ≥ t∗.

Proof. This is an immediate consequence of Lemma 14 and Proposition 7. Indeed, let
0 ≤ µ < `− 1, form Lemma 14 we have St[f ] ◦ St[g] ∈ A(t−1, Cµ, n), then Proposition 7
implies

|(1− St) (St[f ] ◦ St[g]) |t−1 ≤ κ3 |St[f ] ◦ St[g] |t−1, Cµ t−µ

≤ κ3 κ12 |f |C`1 (Rd) t−µ.

Theorem 1 follows from inequalities (17), (18), and Lemma 15.

5 An Application: torus maps

In this section, as an application to Theorem 1, we consider the problem of conjugation of
finite differentiable torus maps to rigid rotations: Tω : θ → θ+ω, ω ∈ Td. More precisely,
given a finite differentiable torus diffeomorphism f and a Diophantine6 frequency vector
ω, we consider the solvability of the non-linear functional equation

f ◦ h = h ◦ Tω + λ , (19)

where h and λ are the unknowns. The main assumption we do is the existence of
an approximate solution (h0, λ0) of (19), where h is finite differentiable and satisfies a
non-degeneracy condition (see Theorem 2).

We emphasise that we do not assume that f is a perturbation of a rotation. In
fact, as we mentioned in the introduction of this work, if f is a perturbation of a
rotation map, to obtain a finite differentiable conjugation result from the analytic one
– by using the Moser’s method – we do not need an estimate of the type given in
Theorem 1 [Mos62, Mos66a, Zeh76, Sal04].

5.1 Smoothing torus maps

Given a continuous torus map f : Td → Td, a lift of f to Rd (the universal cover of Td)
is a continuous map f̂ : Rd → Rd such that

π ◦ f̂ = f ◦ π , (20)

where π is the covering map

π : Rd → Td, π(x) = x mod Zd. (21)
6See Definition 4 in Section 5.2.
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Proposition 16. Given a continuous torus map f : Td → Td any lift f̂ : Rd → Rd has
the form

f̂(x) = A x + u(x) (22)

where A ∈ Md×d(Zd) and u ∈ C0
(
Td, Rd

)
(here Md×d(Zd) is the set d × d integer

valued matrices and C0
(
Td, Rd

)
denotes the set functions in C0

(
Rd, Rd

)
which are Zd-

periodic). Moreover, if f has additional regularity the corresponding periodic function u
has the same regularity.

Let Diff 0(Rd) and Diff 0(Td) denote the group of homeomorphisms of Rd and Td, re-
spectively. For r ≥ 0, let Diff r(Rd) and Diff r(Td) denote the set of C r-diffeomorphisms
of Rd and Td, respectively. For r ∈ [1,∞) ∪ {0}, D r(Rd) denotes the subset of dif-
feomorphism in Diff r(Rd) that can be written in the form (22). And for 0 < r < 1,
D r(Rd) denotes the set of C r-diffeomorphisms f̃ ∈ Diff 0(Rd) such that f̃ and f̃−1 can
be written in the form (22).

Remark 17. Notice that any diffeomorphism f̂ ∈ D r(Rd) define a torus diffeomorphism
f ∈ Diffr(Td) such that f ◦π = π ◦ f̂ , with π defined in (21). Moreover, even though lifts
of continuous torus diffeomorphism are not unique, they differ from a constant vector
in Zd. This enables us to work with lifts of torus maps. For notational reasons we will
the same letter to denote the torus map and a lift of it.

Let f ∈ D r(Rd) with f(x) = Ax + u(x) and let St be as in Definition 3. Notice that
(because St acts as the identity on polynomials)

St[f ](z) = A z + St[u](z) . (23)

Let P(ρ,C`) the subset of functions in A(ρ,C`, d) (see Definition 2) which are Zd-
periodic. Since St takes periodic functions in periodic functions one has that if u ∈
C`(Td) then St[u] ∈ P(t−1, C0). Moreover, all the properties of St given in Section 3 as
well as Theorem 1 hold for functions in C`(Td). Hence one has the following result.

Corollary 18. Let `1, `2 > 1 with `1, `2 /∈ N. For f ∈ D`1(Td), g ∈ D`2(Td) the
composition f ◦ g belongs to D`(Td) with ` = min( `1, `2).

Moreover, let κ1 be as in Proposition 5, given two real numbers β > 0, 0 ≤ µ < `−1,
there exist two positive constants κ = κ(n, d, `1, `2, β, µ) and t∗ = t∗(n, `2, β) such that
for every f = A + u ∈ D`1(Td) and g = B + v ∈ D`2(Td), with κ1 |Dv|C0(Td) < β − |B|,
the following holds

|St[f ] ◦ St[g]− St[f ◦ g] |t−1 ≤ κ |u|C`1 (Td) t−µ , ∀ t ≥ t∗ .

Proof. Notice that with the hypothesis of Corollary 18 one has

St[f ] ◦ St[g]− St[f ◦ g] = St[u] ◦ St[g]− St[u ◦ g] ∈ C`(Td) ,

with ` = min(`1, `2). Moreover, for any z with |Im (z)| ≤ t−1 one has

| Im (St[g])| = |B Im (z) + Im (St[v](z)) |
≤ |B| t−1 + κ1 |Dv|C0(Td) t−1

≤β t−1 .

The proof is finished following the same lines of the proof to Theorem 1 given in Section 4.
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5.2 A non-perturbative conjugation theorem

Definition 4. Given γ > 0 and σ ≥ d, we define D(γ, σ) as the set of frequency vectors
ω ∈ Rd satisfying the Diophantine condition:

| k · ω −m| ≥ γ |k|−σ
1 ∀` ∈ Zd \ {0}, m ∈ Z,

where |k|1 = |k1|+ · · ·+ |kd|.

Given a map f ∈ D0(Td) we use the following notation

avg {f }θ
def=
∫

[ 0,1]d
f(x)dx .

Taking coordinate-function the above notation is extended to matrix or vector valued-
functions G with components Gi,j ∈ D0(Td).

We will prove the following non-perturbative conjugation result.

Theorem 2. Let ω ∈ D(γ, σ), for some γ > 0 and σ ≥ d, let `, µ and q be such that
2 (σ + 1) ≤ q < µ < `− 1. and such that ` and `− σ are not integer.

Let f = A + u ∈ D`(Td), H0 = B + v0 ∈ D`(Td), and λ0 ∈ Rd be fixed. Define the
error function

E0
def= f ◦H0 −H0 ◦ Tω − λ0 .

Assume that the following hypothesis hold

1. E0 ∈ C`(Td).

2. κ1 |Dv0|C0(Td) < β − |B|, for some β > |B|, where κ1 is as in Proposition 5.

3. The matrix Φ def= avg
{

(DH0)
−1
}

θ
is invertible and there are two positive numbers

η and η̃ such that ∣∣∣ (DH0)
−1
∣∣∣
C0(Rd)

≤ η̃ ,
∣∣Φ−1

∣∣ ≤ η .

Then there exists a constant C > 1, depending on d, `, µ, q, σ, γ−2, η, η̃, β, , |B| +
|v0|C`(Td), |v0|C` and |u|C`(Td), such that if

C |E0|C0(Td) < min(1, β) ,

then there exists constant vector λ∗ ∈ Rd and diffeomorphism H∗ ∈ D `−σ(Td) such that

f ◦H∗ = H∗ ◦ Tω + λ∗ .

Moreover, H∗ −H0 ∈ C`−σ(Tn) and the following holds

|H∗ −H0|Cα(Td) ≤ C |E0|1/ µ

C0(Td)
,

and
|λ∗ − λ0| ≤ C |E0|1/ µ

C0(Td)
.
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Let us briefly explain the hypotheses of Theorem 2. Condition 1 ensures that the
error function is periodic so that the linear part of the conjugation map has not to be
changed. Condition 2 enables us to control the size of the imaginary part of St[H0](T d

t−1).
So that Corollary 18 applies. Finally condition 3 is a non-degenerate condition on the
approximate solution H0.

The proof to Theorem 2 we present here uses the estimate given in Corollary 18
and the analytic version of Theorem 2 formulated in Theorem 3. We will not give here
any proof of Theorem 3, a proof using a ‘polishing’ method7 will appear in a future
paper [GE05].

Theorem 3. Let ω ∈ D(γ, σ), for some γ > 0 and σ ≥ d. Assume that β, ρ > 0,
λ0 ∈ Rd, and f = A + u and h0 are given and define the error function

e0
def= f ◦ h0 − h0 ◦ Tω − λ0 .

Assume that the following hypothesis hold

1. u ∈ P(2 β ρ, C2) and | Im (h0)|ρ < β ρ.

2. e0 ∈ P(ρ,C0).

3. The matrix Dh0(z) is invertible for any z ∈ T d
ρ . The matrix Φ def= avg

{
Dh−1

0

}
θ

is
invertible. Moreover, there exist two positive numbers η and η̃ such that∣∣Φ−1

∣∣ ≤ η ,
∣∣∣ (Dh0)

−1
∣∣∣
ρ
≤ η̃ .

Then there exists a constant M > 0, depending on d, σ, γ−2, β, η, η̃, |B|+ |Dv0|ρ, and
|u|2 βρ,C2, such that if q ≥ 2(σ + 1) and

M ρ q |e0|ρ < min( 1, β)

then there exists a constant vector λ∗ ∈ Rd and a diffeomorphism h∗ ∈ D0(Td) such that
(h∗ − h0) ∈ P(ρ/2, C0), and such that

f ◦ h∗ = h∗ ◦ Tω + λ∗ .

Moreover, the following inequalities hold

|h∗ − h0|ρ/2 ≤ M ρ−σ | e0 |ρ ,

|Dh∗ −Dh0|ρ/2 ≤ M ρ−(σ+1) | e0 |ρ ,

|λ∗ − λ0| ≤ M | e0 |ρ .

Remark 19. It turns out [GE05] that the constant M in Theorem 3 is increasing with
respect to the initial data β, η, η̃, |Dv0|ρ, and |u|2 βρ,C2.

7See Section 1.
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5.2.1 Proof of Theorem 2

Throughout this section we assume that the hypotheses of Theorem 2 hold, that St is
defined as in Definition 3, and that in Definition 3 s = 1.

Following the scheme explained in Section 1, we prove Theorem 2 in several lemmas.
The procedure of the proof consists of three main steps:

Step 0 Write our conjugation problem in a functional form. Consider the functional

F (f, h, λ) def= f ◦ h− h ◦ Tω − λ. (24)

Then (f,H0, λ0) is an approximate solution of the problem

F (f, h, λ) = 0. (25)

Step 1 Find an analytic approximate solution of (25) which satisfies the hypotheses of
Theorem 3. This is done in Lemmas 20 and 21.
Step 2 Construct a double sequence of approximate solution of (25) (see lemmas 22
and 24) which, under the hypotheses of Theorem 2, converge (see Lemma 25).

We remark that lemmas 20 and 21 make the difference between the procedure we
use to proof Theorem 2 and that described in the proof of Theorem 1.2 in [Zeh75].

Lemma 20. Let 2 σ < µ < ` − 1, and β > 0 be fixed, and let E0 is as Theorem 2.
Define t0 ≥ 1 by

t−µ
0

def= |E0|C0(Td) .

Let t∗ be as in Corollary 18, assume that |E0|C0(Td) is sufficiently small such that
t0 ≥ t∗. There exists a constant C0 depending on d, `, β, µ, and |u|C`(Td) such that for
any t ≥ t0, one has F (St[f ], St[H0], λ0) ∈ P(t−1, C0) and

|F (St[f ], St[H0], λ0) |t−1 ≤ C0 |E0|C0(Td) .

Proof. First of all notice that, since St[Tω] = Tω, one has

St[H0 ◦ Tω ] = St[H0] ◦ Tω ,

hence, performing some simple computations, one obtains

F (St[f ], St[H0], λ0) = (F (St[f ], St[H0], λ0)− St[E0]) + St[E0]
= {St[f ] ◦ St[H0]− St[f ◦H0] } + St[E0] .

Let κ1 be as in Proposition 5, let t∗ and κ be as in Corollary 18. Assume that |E0|C0

is sufficiently small such that t0 ≥ t∗, then Corollary 18 and Proposition 5 imply for all
t ≥ t0

|F (St[f ], St[H0], λ0) |t−1 ≤ κ |u|D`(Td) t−µ + κ1 |E0|C0(Td) ≤ C0 |E0|C0(Td)
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The following lemma ensures that if |E0|C0 is sufficiently small there is an analytic
approximate solution of (25) which satisfies the hypothesis of Theorem 3.

Lemma 21. Let β be as in Theorem 2 and let µ and t0 be as in Lemma 20. Define

ρ0
def= t−1

0 , f0
def= St0 [f ] , h0

def= St0 [H0] , e0
def= F (f0, h0, λ0) ,

and let u0 and ϕ0 denote the periodic parts of f0 and h0, respectively.

There exists a positive constant C1, depending on d, `, η̃, η, and |v0|C`(Td), such tat if

C1 |E0| < 1 , ρ0 (2 β) ≤ 1, (26)

then the following hold

1. |Dh0|ρ0
< β.

2. u0 ∈ P(2 β ρ0, C
2 ), and the following estimates hold

|u0|2 β ρ0
≤ κ6 |u|C`(Td) , |u0|2 β ρ0,C2 ≤ κ7 |u|C`(Td) , (27)

where κ6 is as in Lemma 8 taking C = 2β, and r = 0 and κ7 is as in Proposition 10
taking C = 2β, and r = 1/2.

3. e0 ∈ P(ρ0, C
0).

4. Dh0(z) is invertible for each z ∈ T d
ρ0

and the matrix Φ0
def= avg

{
Dh−1

0

}
θ

is also
invertible. Moreover, ∣∣∣ (Dh0)

−1
∣∣∣
ρ0

≤ 3
2

η̃ ,
∣∣Φ−1

0

∣∣ ≤ 3
2

η . (28)

Proof. From Proposition 5 and assumption 2 of Theorem 2 one has

|Dh0|ρ0
= sup

z∈T d
ρ0

|B + St0 [Dv0](z) | ≤ |B|+ κ1 |Dv0|C0 < β .

Now assume that |E0|C0(Td) is sufficiently small such that the second inequality in (26)
holds, then Part 5 of Lemma 8 and Part 3 of Proposition 10 imply that u0 = St0 [u] ∈
P( 2β , ρ0, C

2) and that the estimates in (27) hold. This proves part 1 and 2 of Lemma 21,
and since we are assuming that E0 ∈ C`(Td), then from (23) one has part 3 of Lemma 21.

In order to prove Part 4 of Lemma 21, we first notice that

|Dh0 −DH0 |C0(Rd) = |St0 [Dv0]−Dv0 |C0(Td) ≤ (κ1 |Dv0 |C`−1 ) t−`+1
0 ,

hence if t0 is sufficiently big (equivalently |E0|C0 sufficiently small) such that

C2 t−`+1
0 ≤ 1 ,

with
C2

def= 23 max (η̃ , 1) κ1 |Dv0|C`−1 ≤ 1 ,
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then we have that Dh0(x) is invertible for all x ∈ Rd, and∣∣∣ (Dh0)
−1
∣∣∣
C0(Rd)

≤ η̃ + 2 η̃2 |Dh0 −DH0 |C0(Rd) ≤ η̃ + η̃/4 (29)

Now, let z ∈ T d
ρ0

, then

Dh0(z) = Dh0(Re (z)) + [Dϕ0(z)−Dϕ0(Re (z)) ] ,

from Remark 11 we have that

|Dϕ0(z)−Dϕ0(Re (z)) | ≤ |Im (z)| |Dϕ0 |ρ, C1(Td) ≤ κ7 |Dv0|C`−1(Td) t−1
0

Therefore, if
C3

def= max
(
C2, 23 max(2 η̃, 1) κ7 |Dv0|C`−1(Td)

)
and

C3 t−1
0 ≤ 1 ,

one has that Dh0(z) for any z ∈ T d
ρ0

is invertible and using (29) one has∣∣∣ ( Dh0)
−1
∣∣∣
ρ0

≤
∣∣∣ ( Dh0)

−1
∣∣∣
C0(Rd)

(1 + 1/4) ≤ 3 η̃/2

Similarly, there exists a constant C1 ≥ C3, depending on d, `, η, and |v0|C`(Td), such tat
if

C1 |E0| < 1 ,

then Φ0 is invertible and the second estimate in (28) holds.

Now we have the necessary conditions to construct a sequence of analytic solutions
of (25) by using the method described in the proof to Theorem 1.2. in [Zeh75].

Lemma 22. Assume that for n ≥ 0 fixed there exists an approximate solution (fn, hn, λn)
of (25), with error function en

def= F (fn, hn, λn) . Let un and ϕn be the periodic parts of
fn and hn, respectively. Assume that the following conditions hold

C1(n) |Dhn|ρn
< βn for βn, ρn > 0 such that

2 ρn βn < 1 , βn ≥ 2−(n+1) β. (30)

C2(n) un ∈ P(2 βn ρn, C 2 ) and the following estimates hold

|un|2 β ρ0
≤ κ6 |u|C`(Td) , |un|2 β ρ0,C2 ≤ κ7 |u|C`(Td) , (31)

where κ6 and κ7 are as in Lemma 21.

C3(n) en ∈ P(ρn, C0).

C4(n) Dhn(z) is invertible for each z ∈ T d
ρn

and the matrix Φn
def= avg

{
Dh−1

n

}
θ

is also
invertible. Moreover, there exists two positive numbers ηn and η̃n such that∣∣∣ (Dhn)−1

∣∣∣
ρn

≤ η̃n ,
∣∣Φ−1

n

∣∣ ≤ ηn . (32)
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there exists a constant M̃n, depending on d, σ, γ−2, βn, ηn, η̃n, |B| + |ϕn|ρ, and
|un|2 βn ρn,C2, such that if

M̃n ρ− q
n |en|ρn

< min(1, βn) , (33)

then there exists a constant vector λn+1 ∈ Rd and a diffeomorphism hn+1 such that
(hn+1 − hn) ∈ P(ρn/2, C0), and such that

F (fn, hn+1, λn+1) = 0 . (34)

and such that the following estimates hold

|hn+1 − hn|ρn+1
≤ M̃n ρ−σ

n | en |ρn
,

|Dhn+1 −Dhn|ρn+1
≤ M̃n ρ−(σ+1)

n | en |ρn
,

|λn+1 − λn| ≤ M̃n | en |ρn+1
.

(35)

Define
ρn+1

def= ρn/2 , tn+1 = 2 tn , (36)

and
fn+1

def= Stn+1 [f ] , en+1
def= F (fn+1, hn+1, λn+1) ,

and let η 0, η̃ 0 be given by (28). There exists a constant M̂n, depending on M̃n, ηn, and
η̃n such that if

M̂n 2(n+1) ρ−(σ+1)
n |en|ρn

≤ min ( β, 1) (37)

then hn+1 and fn+1 satisfy properties C1(n+1), C2(n+1), and C3(n+1) with

η̃n+1
def= η̃n + η̃n 2−(n+1) ,

ηn+1
def= ηn + ηn 2−(n+1)

βn+1
def= βn + β 2−(n+1) .

(38)

Moreover the following estimate holds

| en+1|ρn+1
≤ κ4 |u|C`(Td) ρ`

n , (39)

where κ4 is as in part 1 of Proposition 10.

Proof. The existence of hn+1, λn+1, such that (34) and (35) hold is ensured by Theo-
rem 3. Indeed, notice that Lemma 12 and C1(n) imply

|Im (hn)|ρn
≤ ρn |Dhn|ρn

< βn ρn .

Hence, the hypotheses of Theorem 3 are met.

Let us first verify that C1(n+1) holds. From the second estimate in (35) one has

|Dhn+1(z)|ρn+1
≤ |Dhn(z)|ρn+1

+ M̃n ρ−(σ+1)
n |en|n . (40)
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Moreover, since by assumption (30) holds, one has that if ρn+1 and βn+1 are defined
by (36) and (38), respectively, then (30) also holds for (n + 1). Now assume that (37)
holds with

M̂n ≥ M̃n,

then (40) implies that C1(n+1) holds with βn+1 defined in (38) and ρn+1 defined
in (36).

From the fact that the first inequality in (30) holds for (n + 1), Part 5 of Lemma 8 and
Part 3 of Proposition 10 imply that un+1 = Stn+1 [u] ∈ P( 2βn , ρn, C2) and that the
estimates in (31) hold for (n + 1). Hence, C2(n+1) holds.

Notice that C3(n+1) is a consequence of C3(n), C1(n+1) and the fact that hn+1 −
hn ∈ P(ρn+1, C

0).

Now we prove that C4(n+1) holds. From (40) we have that if

M̂
def= max

(
2 max(η̃n, 1) M̃n, 2 max(ηn, 1) M̃n, M̃n

)
and if inequality (37) holds, then

M̃ ρ−(σ+1)
n |en|ρn

≤ 1/2

this and (40) imply that, Dhn+1(z) is invertible for any z ∈ T d
ρn+1

and using (37) one
has ∣∣∣ (Dhn+1(z))−1

∣∣∣
ρn+1

≤ η̃n + 2 η̃2
n M̃n ρ−(σ+1)

n |en|ρn
≤ η̃n + η̃n 2−(n+1)

Therefore, the first inequality in (32) holds for n + 1 That the second inequality in (32)
holds for n + 1 is proved similarly.

We now prove estimate (39). From Lemma 12 and since C1(n+1) holds we have

|Im (hn+1)|ρn+1
≤ ρn+1 βn+1 .

Then applying Part 1 of Lemma 8 (because the first inequality in (30) holds) one obtains

|en+1|ρn+1
= | fn+1 ◦ hn − fn ◦ hn|ρn+1

≤ | (S2 tn [u]− Stn [u]) ◦ hn |ρn+1

≤ | (S2 tn − Stn) [u] |βn+1ρn+1

≤ κ4 |u|C`(Td) ρ`
n,

where κ4 is as in Lemma 8 taking r = 0, and C = 2βn+1.

Remark 23. Let M̃n and M̂n be as in Lemma 22. For n ≥ 0 define

Mn
def= max

(
M̂n, M̂n

)
.
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From Remark 19 we know that M̃n is increasing with respect o to βn, ηn, η̃n, |Dϕn|ρn
,

and |un|2 βnρn, C 2. And it follows from the proof to Lemma 22 that M̃n is also increasing
with respecto to the same quantities. Let us write explicitly dependence on these variables
as follows:

Mn = Ω
(
βn, ηn, η̃n, |Dϕn|ρn

, |un|2 βnρn, C 2

)
.

Define
M∞ = Ω

(
2 β, 4 η, 4 η̃ , κ7 |u|C`(Td)

)
.

We will show in Lemma 24 that if |E0|C0 is sufficiently small, then Mn ≤ M∞ for all
n ≥ 0.

Lemma 24. Assume that the hypothesis of Theorem 2 hold. Let t0, ρ0 be as in
Lemma 21. Consider the sequences of numbers {ρn}n≥0, {β}n≥0, { η}n≥0, and { η̃}n≥0

defined in (36) and (38) for n ≥ 1 and

β0
def= β , η0

def=
3 η

2
, η̃0

def=
3 η̃

2
, .

There exists a constant M , depending on d, σ, γ−2, β, η, η̃, |B|+ |Dv0|ρ, |v0|C`(Td),
and |u|2 βρ,C2, such that if

M ρ
(µ− q)
0 < min(1, β) , and 2 β ρ0 < 1 , (41)

then there exists a sequence of numbers {λn}n∈N and two sequences of functions {hn}n≥0 ⊂
D0(Td) and { fn}n≥0 ⊂ D0(Td) satisfying conditions C1(n)-C4(n) and (34). Moreover,
for each n ≥ 0 (hn+1 − hn) ∈ P(ρn, C0) and the following estimates hold

|hn+1 − hn|ρn+1
≤ M ρ`−σ

n

|Dhn+1 −Dhn|ρn+1
≤ M ρ`−(σ+1)

n

|λn+1 − λn| ≤ M ρ`
n .

(42)

Proof. Let C1 be as in Lemma 21 and let M be a constant greater than C1, then if (41)
holds then properties C1(0)-C4(0) in Lemma 22 hold.

Let M∞ be as in Remark 23, C0 as in Lemma 20, and κ4 as in Lemma 22 and
assume that (41) holds with

M ≥ max
(

C1, 2 M∞ C0 , 2`+1 κ4 M∞ |u|C`(Td)

)
(43)

Then, (33) and (37) hold for n = 0. Indeed, from Lemma 20 we have

M̃0 ρ− q
0 | e0|ρ0

≤ M∞ C0 ρµ− q
0 ≤ M ρµ− q

0 < min(1, β) ,

and
2 M̂0 ρ

−(σ+1)
0 |e0|ρ0

≤ 2 M∞ C0 ρ
µ−(σ+1)
0 ≤ M ρµ− q

0 < min(1, β) ,

where we have used that

ρµ
0 = |E0|C0(Td) , and 2(σ + 1) ≤ q < µ < `− 1.
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Hence Lemma 22 implies the existence of h1 and λ1 such that (34), (35), and (39)
hold for n = 0, and such that f1 = St1 [u] and h1 satisfy C1(1)-C4(1). Moreover,
estimate (35) and Lemma 20 imply (42) for n = 0.

Now we iterate the above procedure. Assume that for k ≥ 1 there exist hk and λk

such that (34), (35), (39), and (42) hold for (k − 1), and such that fk = Stk [u] and hk

satisfy C1(k)-C4(k). To obtain hk+1 and λk+1 satisfying the same conditions for k we
only have to verify that estimates (33) and (37) in Lemma 22 hold for k.
From (38) one obtains

βk = β

k∑
j=0

2−j < 2 β , η̃k = η̃0

k∏
j=1

(
1 + 2−j

)
< 4 η̃ , ηk = η0

k∏
j=1

(
1 + 2−j

)
< 4 η

Therefore, if Mk and M∞ are as in Remark 23, then

Mk ≤ M∞ .

This and (39) imply

M̃k ρ− q
k |ek|ρk

≤
(
2` κ4 M∞ |u|C`(Td)

)
ρ `− q

k ≤ M ρµ− q
0 < min(1, β) ,

and

M̂k 2(k+1) ρ
−(σ+1)
k |ek|ρk

≤ M ρ`−q
0 ≤ M ρµ− q

0 < min(1, β) ,

where we have used ρk = 2−k ρ0 , and `− (σ + 2) ≥ `− q > µ− q.

Hence, if M satisfies (41) and (43), then (33) and (37) hold, and Lemma 22 applies
yielding hk+1 and λk+1 such that (34) and (35) hold. Moreover, fk+1 = Stk+1

[u] and
hk+1 satisfy C1(k+1)-C4(k+1) and from (35) and (34) one has that (42) holds.

Lemma 25. Assume that the hypotheses of Lemma 24 hold. There exist a constant
vector λ∗ ∈ Rd and a function H∗ ∈ D`−σ such that H∗ −H0 ∈ C`−σ(Tn) and

|H∗ −H0|Cα(Td) ≤ M̃ ρ0 ,

|λ∗ − λ0| ≤ M̃ ρ0 ,
(44)

for some constant M̃ , depending on M , |v0|C`(Td) , `, σ, and α. Moreover (f,H∗, λ∗)
satisfies (25).

Proof. First of all notice that (42) implies that the sequence {λn}n≥0 of Lemma 24
converges to some vector λ∗ ∈ Rd.

To prove the existence of H∗ define wn
def= hn − h0 with {hn}n≥0 as in Lemma 24.

Then from Lemma 24 we have that {wn}n≥0 ⊂ P(ρn, C0) and

sup
n≥1

(
ρ(`−σ)

n |wn − wn+1|ρn

)
< M ,
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where M and ρn are as in Lemma 24. Moreover, if α < `− σ we have

|wn|Cα(Td) ≤
n−1∑
k=0

|hk+1 − hk|Cα(Td) ≤ C4 ρ0 ,

and
|wn − wn+1|Cα(Td) ≤ ρ−α

n+1 |hn − hn+1|ρn+1
≤ C4 ρ`−σ−α

n+1 ,

for some constant C4 depending on M , `, σ, and α.
Hence, if `− σ is not an integer there exists a function8 w ∈ C`−σ(Td) with

|w |C`−σ ≤ C5 ,

for some constant C5 depending on the same variables as C4 and such that such that

lim
n→∞

|w − wn|Cα(Td) = 0 ,

for any α < `− σ.

Lemma 25 follows by taking H∗ def= h0+w . Indeed, H∗−H0 = h0−H0+w ∈ C`−σ(Td)
and

|H∗ −H0|Cα(Td) ≤ |H∗ − hn|C0(Td) + |h0 −H0|C0(Td) + |hn − h0|C0(Td)

= |w − wn|Cα(Td) + | (St0 − 1)[v0] |Cα(Td) + |wn|Cα(Td)

≤ |w − wn|Cα(Td) + κ2 |v0|C`(Td) ρ`−α
0 + C4 ρ0

and using (42)

|λ∗ − λ0| ≤ |λ∗ − λn| +
n−1∑
k=0

|λk − λk−1| ≤ C4 ρ0 .

This proves (44). Moreover, from (34) and the continuity of the operator F defined
in (24) one has F (f,H∗, λ∗) = 0.
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