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Abstract

We study Gevrey asymptotics of the solutions to a family of threefold singular nonlinear
partial differential equations in the complex domain. We deal with both Fuchsian and irregular
singularities, and allow the presence of a singular perturbation parameter. By means of the
Borel-Laplace summation method, we construct sectorial actual holomorphic solutions which
turn out to share a same formal power series as their Gevrey asymptotic expansion in the
perturbation parameter. This result rests on the Malgrange-Sibuya theorem, and it requires to
prove that the difference between two neighboring solutions is exponentially small, what in this
case involves an asymptotic estimate for a particular Dirichlet-like series.
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1 Introduction

We study a family of threefold singular nonlinear partial differential equations of the following
form

(1)
(
(z∂z + 1)r1ϵr3(t2∂t + t)r2 + 1

)
∂Sz X(t, z, ϵ) =

∑
(s,κ0,κ1)∈S

bs,κ0,κ1(z, ϵ)t
s(∂κ0

t ∂κ1
z X)(t, z, ϵ)

+ P (t, z, ϵ,X(t, z, ϵ)),

for given initial conditions

(2) (∂jzX)(t, 0, ϵ) = φj(t, ϵ), 0 ≤ j ≤ S − 1.

The elements r1, r2, r3, S are nonnegative integers (i.e. belong to N = {0, 1, . . .}) with r2, S ≥ 1.
S consists of a finite number of tuples (s, κ0, κ1) verifying κ1 < S. The coefficients bs,κ0,κ1(z, ϵ)
of the linear part in (1) belong to O{z, ϵ} for every (s, κ0, κ1) ∈ S. Here, O{z, ϵ} stands for the
set of holomorphic functions near the origin of C2 in the variables (z, ϵ). In addition to this,
P (t, z, ϵ,X) is a polynomial in the variables t and X with coefficients belonging to O{z, ϵ}. In
this problem, ϵ plays the role of a complex perturbation parameter near 0 ∈ C. The initial data
φj(t, ϵ) in (2) are assumed to be holomorphic functions on a product of two sectors with vertex
at the origin of C and finite radius.
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The family of problems considered in this work constitutes a generalization of the one studied
by the second author in [26] in mainly three respects. The first improvement concerns the
fuchsian operator (z∂z + 1)r1 which now appears on the lefthand side of the main equation.
The research of fuchsian singularities in the framework of partial differential equations is widely
developed, we provide [1], [7], [19], [21], [30], [34] and [39] as examples of references in this
direction. The second point under consideration has to do with the irregular operator (t2∂t+t)

r2 .
In the present work, a wider choice of r2 is allowed with respect to [26], where only r2 = 1 was
considered. The family of equations provided by (1) rests on the class of partial differential
equations with an irregular singularity at t = 0 (in the sense of [29]). The solutions of such
equations and their asymptotic properties are studied in [10], [11], [29], [32], [33] among others.
The last generalization deals with the freedom on the choice of the powers of the complex
perturbation parameter ϵ, which in [26] was taken to be r3 = 1.

The present work lies within the framework of the asymptotic analysis of singular perturba-
tions of initial value problems

(3) ϵL2(t, z, ∂t, ∂z)[u(t, z, ϵ)] + L1(u(t, z, ϵ)) = 0,

where L2 is a linear differential operator and L1 is a nonlinear differential operator, for given
initial data (∂jzu)(t, 0, ϵ) = hj(t, ϵ), 0 ≤ j ≤ ν − 1 belonging to some function spaces. Most of
the results one can find in the literature are related to the study of (3) when ϵ is real and L2 is
an elliptic or a hyperbolic operator of second order which may act on real spaces of functions
such as infinitely smooth functions C∞(Rd) or Sovolev spaces Hs(Rd). These results provide
sufficient conditions for a solution u(t, x, ϵ) of (3) to admit an asymptotic expansion of the form

u(t, x, ϵ) =

n−1∑
i=0

wi(t, x)ϵ
i +Rn(t, x, ϵ),

giving bounds for every remainder Rn, and they are based on semi-group operator methods
(see [17]), the maximum principle and energy integrals estimates (see [22], [31]), or fixed point
theorems for the nonlinear equations (see [18], [22]). In [23] a general survey is exhibited on sin-
gular perturbations under both, asymptotic and numerical points of view. Although the papers
by M. Canalis-Durand, J. Mozo-Fernandez and R. Schäfke [9], and by the second author [25, 26]
consider these type of problems when working with a complex perturbation parameter ϵ, with
solutions in spaces of analytic functions, and for partial differential equations which are singular,
as far as we know no treatment can be found in the literature dealing with a singularly perturbed
partial differential equation which additionally involves a Fuchsian and an irregular singularity.

The main aim of this paper is to construct actual holomorphic solutions X(t, z, ϵ) of (1)-(2)
and to get conditions for existence and uniqueness of the asymptotic expansion

X(t, z, ϵ) =

n−1∑
κ=0

Hκ(t, z)
ϵκ

κ!
+Rn(t, z, ϵ),

where the remainder Rn(t, z, ϵ) is bounded in terms of a Gevrey sequence of certain order α > 0,
it is to say, there exist C,M > 0 such that

|Rn(t, z, ϵ)| ≤ CMnn!α|ϵ|n, n = 1, 2, . . .

for every ϵ on a sector, uniformly in (t, z) on a product of a sector and an appropriate disc
centered at 0. In this case, compared to [26], the Gevrey order 1 will turn out to become
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(r1 + r2)/r3, owing to the positive power of ϵ and the appearance of the fuchsian and irregular
operators (z∂z + 1)r1 and (t2∂t + t)r2 , respectively.

The strategy followed is similar to the one shown in [26], which in turn rests on the one
in [9], by M. Canalis-Durand, J. Mozo-Fernández and R. Schäfke. It consists of transforming
the problem (1), by means of the linear map t 7→ t/ϵr3/r2 , into an auxiliary regularly perturbed
nonlinear partial differential equation which has an irregular singularity at t = 0, preserving the
fuchsian singularity at z = 0, see (34). This transformation induces the existence of poles in the
coefficients of the new problem with respect to ϵ at 0.

The solution of (1)-(2) is constructed by handling a resummation procedure of formal power
series, known as κ-summability. This process is widely used when working with Gevrey asymp-
totic expansions of analytic solutions of linear and nonlinear differential equations with irregular
singularities. See, for example, [4], [8], [14], [16], [28], [35], [36]. The formal solution of the
auxiliary problem (34),

Ŷ (t, z, ϵ) =
∑
m≥0

Ym(z, ϵ)
tm

m!

is such that, for every ϵ, its Borel transform of order 1 with respect to t,

Vϵ(τ, z) =
∑
β≥0

Vβ,ϵ(z)
τβ

(β!)2
, Vβ,ϵ(z) := Yβ(z, ϵ),

satisfies a new singular Cauchy problem, see (14)-(15). This turns out to be a non-linear convo-
lution integro-differential Cauchy problem with rational coefficients in τ , holomorphic in (τ, z)
near the origin and meromorphic in ϵ with poles at 0.

For suitably chosen initial data (see Proposition 3), there exists ρ > 0 such that the function
V (τ, z, ϵ) := Vϵ(τ, z) defines a holomorphic function on Sd ×D(0, ρ)× E , where Sd is a suitable
open sector with vertex at the origin, infinite radius, bisecting direction d and small opening,
D(0, ρ) := {z ∈ C : |z| < ρ} and E is a sector of finite radius with vertex at the origin. In addition
to this, one can prove that Vβ(z, ϵ) := Vβ,ϵ(z) verifies adequate estimates on the variable τ for
every β ≥ 0 so that Laplace transform Ld can be applied, leading to a solution of (34)-(35).
While in [26] the only forbidden direction is π, here we come up with some other more (see
Assumption (A.1)). However, Assumption (B) in [26] remains unchanged in the present paper,
so that every equation studied in [26] fits in the family taken into account now. For every ϵ ∈ E ,
the function

(t, z) 7→ Yd,ϵ(t, z) =
∑
β≥0

Ld
τ (Vβ(τ, ϵ))(t)

zβ

β!

defines a holomorphic function in a sector of finite radius depending on ϵ, times a neighborhood
of the origin (see Theorem 1). It is worth saying that the bounds verified by the coefficients
Vβ(z, ϵ) are obtained by means of fixed point arguments in certain well chosen weighted Banach
spaces of holomorphic functions, see Section 2.

Moreover, if one chooses appropriate initial conditions and a finite family of sectors {Ei}i∈I
whose union forms a good covering (see Definition 3), Xi(t, z, ϵ) := Yd,ϵ(ϵ

r3
r2 t, z) turns out to be

a holomorphic and bounded solution of the main problem (1)-(2) on T ×D(0, ρ2)×Ei, for every
i ∈ I, where T is an open sector with vertex at 0 and finite radius. Actually, the difference
|Xi(t, z, ϵ)−Xi+1(t, z, ϵ)| tends to 0 in the variable ϵ faster than exp(−Mi/|ϵ|A1), for ϵ ∈ Ei∩Ei+1,
uniformly in the other variables and where Mi > 0 and A1 = r3/(r1+ r2) (see Theorem 2). The
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procedure followed at this stage rests on a careful estimation of Dirichlet-like series of the form

(4)
∑
κ≥0

e
− 1

(κ+1)α
1
ϵ aκ,

where 0 < a < 1, α > 0 and ϵ is small. It is worth mentioning that general Dirichlet series

∞∑
n=0

ane
−λnz

have been thoroughly studied in the case when {λn}∞n=0 is an increasing sequence of real numbers
tending to +∞ (see [20, 38, 2]), or a sequence of complex numbers with |λn| → ∞ (see [24]),
but (4) does not fit in these situations. Also, there is a well-known theory about almost periodic
functions, introduced by H. Bohr (see [6, 5, 13]), which are the uniform limits in R of exponential
polynomials

∑n
k=1 ake

iskx, where the values sk belong to the so-called spectrum Λ ⊂ R. However,
in our case we would be rather interested in the asymptotic behaviour of the sum when x
tends to ∞ in the positive imaginary axis. Our technique will finally rest on Euler-Maclaurin
formula, Watson’s Lemma and the equivalence between null Gevrey asymptotics and exponential
smallness.

The main result of the present work (Theorem 4) establishes the existence of a formal power
series

X̂(ϵ) =
∑
κ≥0

Hκ
ϵκ

κ!
,

with coefficients in the Banach space of holomorphic and bounded funcions on T ×D(0, ρ2) with

the supremum norm, which is the formal solution of (1). X̂ is the Gevrey asymptotic expansion
of order (r1 + r2)/r3, of the functions Xi on Ei, for every i ∈ I. This last result is based on a
cohomological criterion of B. Malgrange and Y. Sibuya (Theorem (MS)).

The paper is organized as follows.
Section 2 is devoted to the study of the behavior of several operators acting on the elements in
a family of weighted Banach spaces. These results are applied in Section 3 when searching for
the solution of a parameter-depending nonlinear convolution differential Cauchy problem with
singular coefficients.
After a brief introduction from the classical theory of Borel-Laplace transforms, and after es-
tablishing some commutation formulas with multiplication and integro-differential operators in
Section 4.1, we focus our attention on finding a solution of a nonlinear Cauchy problem with
irregular and regular singularities and whose coefficients have polar singularities. This is per-
formed in Section 4.2. The link between the Cauchy problem solved in Section 3 and this one is
established by means of Borel-Laplace transform on the corresponding solutions.
In Section 5.1 we construct actual solutions Xi, i ∈ I, of our initial problem and prove expo-
nential flatness of the difference of two of these solutions with respect to ϵ in the intersection of
their domain of definition, uniformly in the other variables.
Finally, in Section 5.2 we conclude with the main result of the present work, leading to the
existence of a formal power series of the variable ϵ with coefficients in an appropriate Banach
space of functions which formally solves equation (1) and is the Gevrey asymptotic expansion
of the functions Xi of a certain order, for every i ∈ I.
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2 Weighted Banach spaces of holomorphic functions on sectors

In what follows, for an open set U ⊂ C, O(U) denotes the set of complex holomorphic
functions in U . We consider an open sector E with vertex at the origin and finite radius rE > 0,
and also an open sector Sd centered at 0 with infinite radius and bisecting direction d ∈ R.
Let (ρβ)β≥0 be a sequence of positive real numbers. In the following, Ωβ stands for the set
Sd ∪D(0, ρβ), where D(0, ρβ) is the open disc centered at 0 with radius ρβ , for every β ≥ 0.

Throughout this section, b and r are fixed positive real numbers with b > 1. In addition to
this, r1 and r2 stand for fixed nonnegative integers with r2 ≥ 1 and σ is a positive real number.

The following definition of the norms in these weighted Banach spaces heavily rests on the
one appearing in [26]. These norms were appropriate modifications of those defined by O. Costin
in [15] and C. Stenger and the second author in [27].

Definition 1. For every β ≥ 0 and ϵ ∈ E Fβ,ϵ,σ,Ωβ
denotes the vector space of holomorphic

functions v defined in Ωβ such that

∥v(τ)∥β,ϵ,σ,Ωβ
:= sup

τ∈Ωβ

{
|v(τ)|

(
1 +

|τ |2

|ϵ|2r

)
e
− σ

|ϵ|r rb(β)|τ |
}
<∞,

where rb(β) :=
∑β

n=0
1

(n+1)b
.

Assumption (A):

A.1 Sector Sd is such that (
2k + 1

r2

)
π, k = 0, . . . , r2 − 1

differs from the arguments of the elements in Sd \ {0}.

A.2 ρβ := 1

2(β+1)
r1
r2

for every β ≥ 0.

Remark: When Sd verifies Assumption A.1, the roots of the polynomial τ 7→ (β+1)r1τ r2+1,

which are the complex numbers 1

(β+1)
r1
r2

e
iπ

(
2k+1
r2

)
for k = 0, . . . , r2−1, do not belong to Sd. This

is crucial in the following

Lemma 1. Under Assumption (A), a constant C1 > 0 (only depending on Sd and r2) exists
such that ∣∣∣∣ 1

(β + 1)r1τ r2 + 1

∣∣∣∣ ≤ C1,

for every β ≥ 0 and every τ ∈ Ωβ.

Proof. Let β ≥ 0. It is straightforward to derive that

(5)
1

(β + 1)r1τ r2 + 1
=

r2−1∑
k=0

Ak,β

τ − e
iπ( 2k+1

r2
)

(β+1)
r1
r2

,

for every τ ∈ Ωβ , where

Ak,β =
1

r2
e
−iπ

(
r2−1
r2

)
(2k+1)

(β + 1)
− r1

r2 , k = 0, . . . , r2 − 1.
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A similar argument as the one followed in the proof of Lemma 7 in [25] allows us to derive the
existence of a positive constant C1 > 0, not depending on β, such that

(6)

∣∣∣∣∣∣τ − e
iπ

(
2k+1
r2

)
(β + 1)

r1
r2

∣∣∣∣∣∣ ≥ C1

(β + 1)
r1
r2

,

for every τ ∈ Ωβ and k = 0, . . . , r2 − 1. From (5) and (6) we conclude.

The next lemmas are devoted to the behavior of the elements in the Banach space introduced
in Definition 1 under certain operators. Let ρ > 0. The first lemma involves the integral operator
∂−1
τ defined for every v ∈ O(Sd ∪D(0, ρ)) by ∂−1

τ v(τ) :=
∫ τ
0 v(τ1)dτ1, for τ ∈ Sd ∪D(0, ρ). More

generally, for any κ0 ≥ 1, we define the operator ∂−κ0
τ by

(7) ∂−κ0
τ v(τ) :=

∫ τ

0

∫ τ1

0
· · ·
∫ τκ0−1

0
v(τκ0)dτκ0dτκ0−1 · · · dτ1, τ ∈ Sd ∪D(0, ρ),

for every v ∈ O(Sd ∪D(0, ρ)).
Remark: The change of parametrization in (7) given by τj = hjτj−1 for 1 ≤ j ≤ κ0, with

τ0 = τ and 0 ≤ hj ≤ 1 for j = 1, . . . , κ0 allows us to write

(8) ∂−κ0
τ v(τ) = τκ0

∫ 1

0
. . .

∫ 1

0
v(hκ0 · · ·h1τ)Mκ0(h1, . . . , hκ0−1)dhκ0 · · · dh1,

for every v ∈ O(Sd ∪D(0, ρ)). Here, Mκ0(h1, . . . , hκ0−1) is a monic monomial in h1, . . . , hκ0−1

for κ0 ≥ 2, while M1 ≡ 1.

Lemma 2. Let s1, s2, κ0, κ1, β2, β, S ≥ 0 be nonnegative integers. We assume

β2 ≤ β and κ1 < S.

Then, for every ϵ ∈ E, the operator
τ s1

ϵs2
∂−κ0
τ : Fβ2+κ1,ϵ,σ,Ωβ2+κ1

→ Fβ+S,ϵ,σ,Ωβ+S
is bounded.

Moreover, one has∥∥∥∥τ s1ϵs2 ∂−κ0
τ Vβ2+κ1,ϵ(τ)

∥∥∥∥
β+S,ϵ,σ,Ωβ+S

≤ ∥Vβ2+κ1,ϵ(τ)∥β2+κ1,ϵ,σ,Ωβ2+κ1
|ϵ|r(s1+κ0)−s2

(9)

×
[((s1 + κ0)e

−1

σ(S − κ1)

)s1+κ0

(β + S + 1)b(s1+κ0)+
((s1 + κ0 + 2)e−1

σ(S − κ1)

)s1+κ0+2
(β + S + 1)b(s1+κ0+2)

]
,

for every Vβ2+κ1,ϵ ∈ Fβ2+κ1,ϵ,σ,Ωβ2+κ1
.

Remark: If s1 + κ0 = 0, the expression above must be understood to be the limit when
s1 + κ0 tends to 0. The case κ0 = 0 can be studied separately. Both can be directly checked
from the definition of the norms.

Proof. Let ϵ ∈ E and Vβ2+κ1,ϵ ∈ Fβ2+κ1,ϵ,σ,Ωβ2+κ1
. We assume κ0 ̸= 0. From (8) we have∣∣∣∣τ s1ϵs2 ∂−κ0

τ Vβ2+κ1,ϵ(τ)

∣∣∣∣ = ∣∣∣∣τ s1+κ0

ϵs2

∫ 1

0
· · ·
∫ 1

0
Vβ2+κ1,ϵ(hκ0 · · ·h1τ)

(
1 +

|hκ0 · · ·h1τ |2

|ϵ|2r

)

×e−
σ

|ϵ|r rb(β2+κ1)|hκ0 ···h1τ | e
σ

|ϵ|r rb(β2+κ1)|hκ0 ···h1τ |(
1 +

|hκ0 ···h1τ |2
|ϵ|2r

) Mκ0(h1, . . . , hκ0−1)dhκ0 · · · dh1

∣∣∣∣∣∣ ,
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for every τ ∈ Ωβ2+κ1 . From this expression we get∣∣∣∣τ s1ϵs2 ∂−κ0
τ Vβ2+κ1,ϵ(τ)

∣∣∣∣ (1 + |τ |2

|ϵ|2r

)
e
− σ

|ϵ|r rb(β+S)|τ |

≤ |τ |s1+κ0

|ϵ|s2
∥Vβ2+κ1,ϵ(τ)∥β2+κ1,ϵ,σ,Ωβ2+κ1

(
1 +

|τ |2

|ϵ|2r

)
e
− σ

|ϵ|r (rb(β+S)−rb(β2+κ1))|τ |.

By definition of rb one has

rb(β + S)− rb(β2 + κ1) ≥
β + S − (β2 + κ1)

(β + S + 1)b
≥ S − κ1

(β + S + 1)b
.

This fact and the application of the classical estimates

(10) sup
x≥0

xm1e−m2x =

(
m1

m2

)m1

e−m1 , m1,m2 > 0,

to the bounds achieved lead us to (9).

Lemma 3. Let β ≥ 0 be an integer and ϵ ∈ E. For all integers β1, β2 ≥ 0 such that β1+ β2 = β
and Vϵ(τ) ∈ Fβ1,ϵ,σ,Ωβ1

, Wϵ(τ) ∈ Fβ2,ϵ,σ,Ωβ2
one has (Vϵ ⋆Wϵ)(τ) :=

∫ τ
0 Vϵ(τ − s)Wϵ(s)ds belongs

to Fβ,ϵ,σ,Ωβ
. Moreover, there exists a universal constant C2 > 0 such that∥∥∥∥∫ τ

0
Vϵ(τ − s)Wϵ(s)ds

∥∥∥∥
β,ϵ,σ,Ωβ

≤ C2|ϵ|r ∥Vϵ(τ)∥β1,ϵ,σ,Ωβ1
∥Wϵ(τ)∥β2,ϵ,σ,Ωβ2

.

Proof. Let β1, β2, β, ϵ as in the statements of Lemma 3. Let Vϵ(τ) ∈ Fβ1,ϵ,σ,Ωβ1
and Wϵ(τ) ∈

Fβ2,ϵ,σ,Ωβ2
. It is worth pointing out that Ωβ ⊆ Ωβ1 ∩ Ωβ2 .

From the fact that∣∣∣∣∫ τ

0
Vϵ(τ − s)Wϵ(s)ds

∣∣∣∣ = ∣∣∣∣∫ τ

0
Vϵ(τ − s)

(
1 +

|τ − s|2

|ϵ|2r

)
e
− σ

|ϵ|r rb(β1)|τ−s|

×Wϵ(s)

(
1 +

|s|2

|ϵ|2r

)
e
− σ

|ϵ|r rb(β2)|s| e
σ

|ϵ|r (rb(β1)|τ−s|+rb(β2)|s|)(
1 + |τ−s|2

|ϵ|2r

)(
1 + |s|2

|ϵ|2r

)ds
∣∣∣∣∣∣

for every τ ∈ Ωβ , we deduce that∣∣∣∣∫ τ

0
Vϵ(τ − s)Wϵ(s)ds

∣∣∣∣ ≤ ∥Vϵ(τ)∥β1,ϵ,σ,Ωβ1
∥Wϵ(τ)∥β2,ϵ,σ,Ωβ2

×
∫ 1

0

|τ |e
σ|τ |
|ϵ|r (rb(β1)(1−h)+rb(β2)h)(

1 + |τ |2
|ϵ|2r (1− h)2

)(
1 + |τ |2

|ϵ|2rh
2
)dh,

for τ ∈ Ωβ .
In order to conclude, we only have to prove the existence of a universal constant C2 > 0

verifying
(11)

I(|τ |, |ϵ|, β, β1, β2) =
(
1 +

|τ |2

|ϵ|2r
)
e
− σ

|ϵ|r rb(β)|τ |
∫ 1

0

|τ |e
σ|τ |
|ϵ|r (rb(β1)(1−h)+rb(β2)h)(

1 + |τ |2
|ϵ|2r (1− h)2

)(
1 + |τ |2

|ϵ|2r h
2
)dh ≤ |ϵ|rC2,
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for every τ ∈ Ωβ . Since rb is increasing, one has rb(β1)(1− h) + rb(β2)h ≤ rb(β) from where we
deduce

I(|τ |, |ϵ|, β, β1, β2) ≤ J(|τ |, |ϵ|) =
∫ 1

0

(
1 + |τ |2

|ϵ|2r

)
|τ |(

1 + |τ |2
|ϵ|2r (1− h)2

)(
1 + |τ |2

|ϵ|2r h
2
)dh.

We have

(12)
J(|ϵ|r|τ |, |ϵ|)

|ϵ|r
=

∫ 1

0

(1 + |τ |2)|τ |
(1 + |τ |2(1− h)2)(1 + |τ |2h2)

dh.

From Corollary 4.9 in [15] we derive the right-hand side in (12) is a bounded function of τ .
Lemma 3 follows from

sup
|τ |≥0

J(|τ |, |ϵ|)
|ϵ|r

= sup
|τ |≥0

J(|ϵ|r|τ |, |ϵ|)
|ϵ|r

≤ C2,

where C2 does not depend on ϵ ∈ E .

Let V ∈ O(Sd ∪D(0, ρ)). We put (V (τ))⋆1 := V (τ). For every ℓ ≥ 2 we define (V (τ))⋆ℓ :=
V (τ) ⋆ (V (τ))⋆(ℓ−1). By recursion, one can prove the following

Corollary 1. Let β ∈ N, ℓ1 ∈ N with ℓ1 ≥ 2. We also fix ϵ ∈ E and we take β1, . . . , βℓ1 ∈ N such
that β1 + . . .+ βℓ1 = β and Vβj ,ϵ ∈ Fβj ,ϵ,σ,Ωβj

for every j = 1, . . . , ℓ1. Then, Vβ1,ϵ ⋆ · · · ⋆ Vβℓ1
,ϵ ∈

Fβ,ϵ,σ,Ωβ
. Moreover,∥∥∥Vβ1,ϵ(τ) ⋆ · · · ⋆ Vβℓ1

,ϵ(τ)
∥∥∥
β,ϵ,σ,Ωβ

≤ Cℓ1−1
2 |ϵ|r(ℓ1−1) ∥Vβ1,ϵ(τ)∥β1,ϵ,σ,Ωβ1

· · ·
∥∥∥Vβℓ1

,ϵ(τ)
∥∥∥
βℓ1

,ϵ,σ,Ωβℓ1

,

for a universal constant C2 > 0.

Corollary 2. Let β,m1, ℓ0 ≥ 0 be integers. For every ϵ ∈ E, the operator 1
ϵm1 ∂

−ℓ0
τ from Fβ,ϵ,σ,Ωβ

into itself is bounded. Moreover, there exists a positive constant C3 (only depending on σ) such
that ∥∥∥∥ 1

ϵm1
∂−ℓ0
τ Vϵ(τ)

∥∥∥∥
β,ϵ,σ,Ωβ

≤ C3|ϵ|rℓ0−m1 ∥Vϵ(τ)∥β,ϵ,σ,Ωβ
,

for every Vϵ ∈ Fβ,ϵ,σ,Ωβ
.

Proof. If ℓ0 = 0, the result is straightforward. We consider the case when ℓ0 ≥ 1. Let us fix
ϵ ∈ E .

Let χC(τ) ≡ 1 for every τ ∈ C. One can check

∂−ℓ0
τ Vϵ(τ) =

(
χC(τ)

)⋆ℓ0
⋆ Vϵ(τ).

From Corollary 1 we deduce that∥∥∥∥ 1

ϵm1
∂−ℓ0
τ Vϵ(τ)

∥∥∥∥
β,ϵ,σ,Ωβ

≤ Cℓ0
2 |ϵ|rℓ0−m1 ∥χC(τ)∥ℓ00,ϵ,σ,Ω0

∥Vϵ(τ)∥β,ϵ,σ,Ωβ
,

for a universal positive constant C2. Finally, the estimates in (10) allow us to write

∥χC(τ)∥0,ϵ,σ,Ω0
= sup

τ∈Sd∪D(0, 1
2
)

(
1 +

|τ |2

|ϵ|2r

)
e
− σ

|ϵ|r |τ | ≤ 1 +

(
2e−1

σ

)2

,

from where we conclude.
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Lemma 4. Let β, β′ be nonnegative integers such that β′ ≤ β. For every ϵ ∈ E one has
Fβ′,ϵ,σ,Ωβ′

⊆ Fβ,ϵ,σ,Ωβ
. In addition to this, for every Vϵ ∈ Fβ′,ϵ,σ,Ωβ′

one derives

∥Vϵ(τ)∥β,ϵ,σ,Ωβ
≤ ∥Vϵ(τ)∥β′,ϵ,σ,Ωβ′

.

Here, we are giving the same name to a function defined in Ωβ′ and its restriction to Ωβ.

Proof. The result directly follows from the definition of the norms, bearing in mind that Ωβ ⊆
Ωβ′ and that rb is increasing.

Lemma 5. Let h(τ, ϵ) ∈ O(Ω0 × E) such that there exists M > 0 satisfying

sup
(τ,ϵ)∈Ω0×E

|h(τ, ϵ)| ≤M.

Then,
∥h(τ, ϵ)Vϵ(τ)∥β,ϵ,σ,Ωβ

≤M ∥Vϵ(τ)∥β,ϵ,σ,Ωβ
,

for every β ≥ 0, ϵ ∈ E and Vϵ ∈ Fβ,ϵ,σ,Ωβ
.

Proof. It is an immediate consequence of the definition of the norm.

3 A global Cauchy problem

In this section, we study the behavior of the solution of the forthcoming auxiliary Cauchy
problem (14)-(15). Our main aim is to determine its solution in the form

(13) V (τ, z, ϵ) =
∑
β≥0

Vβ(τ, ϵ)
zβ

β
,

defined on appropriate domains, and to obtain suitable estimates for the coefficients in (13) in
terms of the norm in Definition 1.

We keep the same notation as in the previous section. In particular, the values of r > 0,
σ > 0, b > 1 and r1, r2, S ∈ N, with r1 ≥ 0 and r2, S ≥ 1, are the same.

Let A1 and A2 be finite subsets of N2.
For every (κ0, κ1) ∈ A1, I(κ0,κ1) is a finite subset of N2. We assume κ1 < S for every

(κ0, κ1) ∈ A1. For each (s1, s2) ∈ I(κ0,κ1) and every β ∈ N, as1,s2,κ0,κ1,β(τ, ϵ) stands for a
bounded holomorphic function defined on Ω0 ×E . For every (κ0, κ1) ∈ A1, we define the formal
power series

a(κ0,κ1)(τ, z, ϵ) :=
∑

(s1,s2)∈I(κ0,κ1)

(∑
β≥0

as1,s2,κ0,κ1,β(τ, ϵ)τ
s1ϵ−s2 z

β

β!

)
.

For every (ℓ0, ℓ1) ∈ A2, J(ℓ0,ℓ1) is a finite subset of N. For a given m1 ∈ J(ℓ0,ℓ1) and β ∈
N, αm1,ℓ0,ℓ1,β(τ, ϵ) stands for a bounded holomorphic function defined on Ω0 × E . For every
(ℓ0, ℓ1) ∈ A2, we put

α(ℓ0,ℓ1)(τ, z, ϵ) :=
∑

m1∈J(ℓ0,ℓ1)

(∑
β≥0

αm1,ℓ0,ℓ1,β(τ, ϵ)ϵ
−m1

zβ

β!

)
.
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For any fixed ϵ ∈ E , we consider the following Cauchy problem

((z∂z + 1)r1τ r2 + 1) ∂Sz Vϵ(τ, z) =
∑

(κ0,κ1)∈A1

a(κ0,κ1)(τ, z, ϵ)∂
−κ0
τ ∂κ1

z Vϵ(τ, z)

+
∑

(ℓ0,ℓ1)∈A2,ℓ1≥2

α(ℓ0,ℓ1)(τ, z, ϵ)∂
−ℓ0
τ (Vϵ(τ, z))

⋆ℓ1 ,(14)

for given initial data

(15) (∂jzVϵ)(τ, 0) = Vj,ϵ(τ) ∈ Fj,ϵ,σ,Ωj , 0 ≤ j ≤ S − 1.

Proposition 1. We work under assumption (A) on the sets Ωβ for β ≥ 0. For every ϵ ∈ E,
there exists a formal power series solution of (14)-(15),

(16) Vϵ(τ, z) =
∑
β≥0

Vβ,ϵ(τ)
zβ

β!
∈ O(Ωβ)[[z]],

whose coefficients Vβ,ϵ belong to Fβ,ϵ,σ,Ωβ
for every β ≥ 0, ϵ ∈ E. Moreover, these coefficients

verify the recursion formula

Vβ+S,ϵ(τ)

β!
=

∑
(κ0,κ1)∈A1

∑
(s1,s2)∈I(κ0,κ1)

∑
β1+β2=β

as1,s2,κ0,κ1,β1(τ, ϵ)

((β + 1)r1τ r2 + 1)β1!
τ s1ϵ−s2

∂−κ0
τ (Vβ2+κ1,ϵ(τ))

β2!

+
∑

(ℓ0,ℓ1)∈A2,ℓ1≥2

∑
m1∈J(ℓ0,ℓ1)

∑
β0+β1+...+βℓ1

=β

αm1,ℓ0,ℓ1,β0(τ, ϵ)ϵ
−m1∂−ℓ0

τ (Vβ1,ϵ(τ) ⋆ · · · ⋆ Vβℓ1
,ϵ(τ))

((β + 1)r1τ r2 + 1)β0!β1! · · ·βℓ1 !
,

(17)

for every β ≥ 0, τ ∈ Ωβ+S and ϵ ∈ E.

Proof. Let β ≥ 0, τ ∈ Ωβ+S and ϵ ∈ E . Substituting (16) into equation (14) we deduce the
left-hand side is

(18) ((z∂z + 1)r1τ r2 + 1) ∂Sz Vϵ(τ, z) =
∑
β≥0

((β + 1)r1τ r2 + 1)Vβ+S,ϵ(τ)
zβ

β!
.

Each term from the first sum in the right-hand side of (14) becomes

(19)

 ∑
(s1,s2)∈I(κ0,κ1)

∑
β≥0

as1,s2,κ0,κ1,β(τ, ϵ)τ
s1ϵ−s2

zβ

β!

 ·

∑
β≥0

∂−κ0
τ Vβ+κ1,ϵ(τ)

zβ

β!


=

∑
(s1,s2)∈I(κ0,κ1)

∑
β≥0

 ∑
β1+β2=β

as1,s2,κ0,κ1,β1(τ, ϵ)τ
s1ϵ−s2∂−κ0

τ Vβ2+κ1,ϵ(τ)
β!

β1!β2!

 zβ

β!
.

Every term from the last sum in the right-hand side of (14) turns into ∑
m1∈J(ℓ0,ℓ1)

∑
β≥0

αm1,ℓ0,ℓ1,β(τ, ϵ)ϵ
−m1

zβ

β!


×

∑
β≥0

( ∑
β1+...+βℓ1

=β

β!

β1! · · ·βℓ1 !
∂−ℓ0
τ (Vβ1,ϵ(τ) ⋆ · · · ⋆ Vβℓ1

,ϵ(τ))
)zβ
β!
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(20)

=
∑

m1∈J(ℓ0,ℓ1)

∑
β≥0

 ∑
β0+β1+...+βℓ1

=β

β!αm1,ℓ0,ℓ1,β0(τ, ϵ)

β0!β1! · · ·βℓ1 !
ϵ−m1∂−ℓ0

τ (Vβ1,ϵ(τ) ⋆ · · · ⋆ Vβℓ1
,ϵ(τ))

 zβ

β!
.

The recursion (17) immediately follows from (18), (19) and (20). The domain of definition
of the elements in (Vβ,ϵ)β≥0 comes from the denominator ((β + 1)r1τ r2 + 1) appearing in the
recursion. In fact, it could be taken larger than Ωβ , but this does not make any difference to
our final purpose. Furthermore, Lemma 1, Lemma 2, Corollary 1, Corollary 2, Lemma 4 and
Lemma 5 provide that the coefficients Vβ,ϵ belong to Fβ,ϵ,σ,Ωβ

for every β ≥ 0 and ϵ ∈ E .

Remark: One can check that if the initial conditions Vj(τ, ϵ) := Vj,ϵ(τ) j = 0, . . . , S − 1,
are holomorphic functions on Ωj ×E for every j = 0, . . . , S − 1, then Vβ(τ, ϵ) := Vβ,ϵ(τ) are also
holomorphic functions defined in Ωβ × E for every β ≥ 0, due to the way they are constructed
from recursion formula (17).

For every β ∈ N and ϵ ∈ E we put

(21) wβ(ϵ) = ∥Vβ,ϵ(τ)∥β,ϵ,σ,Ωβ
.

A recursion estimate for the elements wβ is obtained in the next

Lemma 6. Under Assumption (A) and

(22) r(s1 + κ0) ≥ s2, r(ℓ0 + ℓ1 − 1) ≥ m1, ℓ1 ≥ 2

for every (κ0, κ1) ∈ A1, (s1, s2) ∈ I(κ0,κ1), (ℓ0, ℓ1) ∈ A2 and m1 ∈ J(ℓ0,ℓ1), there exist D1, D2 > 0
(depending on Sd, r2, rE and the elements in the finite sets A1, A2 and the corresponding I(κ0,κ1),
J(ℓ0,ℓ1)) such that

(23)
wβ+S(ϵ)

β!
≤

∑
(κ0,κ1)∈A1

∑
(s1,s2)∈I(κ0,κ1)

∑
β1+β2=β

D1
As1,s2,κ0,κ1,β1

β1!

wβ2+κ1(ϵ)

β2!
(β + S + 1)b(s1+κ0+2)

+
∑

(ℓ0,ℓ1)∈A2,ℓ1≥2

∑
m1∈J(ℓ0,ℓ1)

∑
β0+...+βℓ1

=β

D2
Bm1,ℓ0,ℓ1,β0

β0!

wβ1(ϵ)

β1!
. . .

wβℓ1
(ϵ)

βℓ1 !
,

for every β ≥ 0 and ϵ ∈ E, where
As1,s2,κ0,κ1,β1 = sup

(τ,ϵ)∈Ω0×E
|as1,s2,κ0,κ1,β1(τ, ϵ)|,

Bm1,ℓ0,ℓ1,β0 = sup
(τ,ϵ)∈Ω0×E

|αm1,ℓ0,ℓ1,β0(τ, ϵ)|.
(24)

Proof. Let β ≥ 0 and ϵ ∈ E . Take ∥·∥β+S,ϵ,σ,Ωβ+S
on the two sides of the equality (17). A

direct application of Lemma 1, Lemma 2, Corollary 1, Corollary 2, Lemma 4, Lemma 5 and the
assumptions (22) allow us to write, for some C̃1 > 0,

wβ+S(ϵ)

β!
≤

∑
(κ0,κ1)∈A1

∑
(s1,s2)∈I(κ0,κ1)

∑
β1+β2=β

C1
As1,s2,κ0,κ1,β1

β1!

wβ2+κ1(ϵ)

β2!

× |ϵ|r(s1+κ0)−s2C̃1(β + S + 1)b(s1+κ0+2)

+
∑

(ℓ0,ℓ1)∈A2,ℓ1≥2

∑
m1∈J(ℓ0,ℓ1)

∑
β0+...+βℓ1

=β

Bm1,ℓ0,ℓ1,β0

β0!
C3C

ℓ1−1
2 |ϵ|r(ℓ0+ℓ1−1)−m1

wβ1(ϵ)

β1!
. . .

wβℓ1
(ϵ)

βℓ1 !
,
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from which (23) easily follows.

Proposition 2. Under the same hypotheses as in Lemma 6, let us define

As1,s2,κ0,κ1(x) :=
∑
β≥0

As1,s2,κ0,κ1,β
xβ

β!
∈ C[[x]],

Bm1,ℓ0,ℓ1(x) :=
∑
β≥0

Bm1,ℓ0,ℓ1,β
xβ

β!
∈ C[[x]],

(25)

where the coefficients As1,s2,κ0,κ1,β, Bm1,ℓ0,ℓ1,β are given by (24). For every ϵ ∈ E we consider the
Cauchy problem

∂Sx u(x, ϵ) =
∑

(κ0,κ1)∈A1

∑
(s1,s2)∈I(κ0,κ1)

D1(x∂x + S + 1)b(s1+κ0+2) (As1,s2,κ0,κ1(x)∂
κ1
x u(x, ϵ))

+
∑

(ℓ0,ℓ1)∈A2,ℓ1≥2

∑
m1∈J(ℓ0,ℓ1)

D2Bm1,ℓ0,ℓ1(x)(u(x, ϵ))
ℓ1 ,(26)

with initial conditions

(27) (∂jxu)(0, ϵ) = wj(ϵ), 0 ≤ j ≤ S − 1,

where the wj are the ones defined in (21).
Then, the problem (26)-(27) has a unique formal solution

(28) u(x, ϵ) =
∑
β≥0

uβ(ϵ)
xβ

β!
∈ R[[x]],

and the sequence (uβ(ϵ))β≥0 verifies

(29) wβ(ϵ) ≤ uβ(ϵ)

for every β ≥ 0.

Proof. From the initial conditions fixed in (27) we have uβ(ϵ) = wβ(ϵ) for every 0 ≤ β ≤ S − 1.
By inserting (28) into (26), and using (25), we obtain a recursion formula for the coefficients:

uβ+S(ϵ)

β!
=

∑
(κ0,κ1)∈A1

∑
(s1,s2)∈I(κ0,κ1)

∑
β1+β2=β

D1
As1,s2,κ0,κ1,β1

β1!

uβ2+κ1(ϵ)

β2!
(β + S + 1)b(s1+κ0+2)

(30) +
∑

(ℓ0,ℓ1)∈A2,ℓ1≥2

∑
m1∈J(ℓ0,ℓ1)

∑
β0+...+βℓ1

=β

D2
Bm1,ℓ0,ℓ1,β0

β0!

uβ1(ϵ)

β1!
. . .

uβℓ1
(ϵ)

βℓ1 !
,

for every β ≥ 0. So, it is clear that the uβ(ϵ), β ≥ S, are uniquely determined real numbers,
and that the series (28) so defined will certainly be a formal solution of (26)-(27). By comparing
(23) to (30), one recursively obtains the inequalities (29).

This section concludes with the effective detection of the solution of (14)-(15) and some
bounds satisfied by its coefficients with respect to the variable z.



13

Proposition 3. Under Assumption (A), let Vj(τ, ϵ) := Vj,ϵ(τ), as in (15), be holomorphic
functions defined in Ωj × E, j = 0, . . . , S − 1. Moreover, assume that:

(i) The functions As1,s2,κ0,κ1(x), Bm1,ℓ0,ℓ1(x) in (25) belong to C{x} for every (κ0, κ1) ∈ A1,
(s1, s2) ∈ I(κ0,κ1), (ℓ0, ℓ1) ∈ A2 and m1 ∈ J(ℓ0,ℓ1).

(ii) S > b(s1 + κ0 + 2) + κ1 for every (κ0, κ1) ∈ A1, and (s1, s2) ∈ I(κ0,κ1).

(iii) r(s1 + κ0) ≥ s2, r(ℓ0 + ℓ1 − 1) ≥ m1 and ℓ1 ≥ 2 for every (ℓ0, ℓ1) ∈ A2 and m1 ∈ J(ℓ0,ℓ1),
all (κ0, κ1) ∈ A1 and (s1, s2) ∈ I(κ0,κ1).

Then, there exists δ > 0 such that, whenever wj(ϵ) = ∥Vj,ϵ(τ)∥j,ϵ,σ,Ωj
< δ for every 0 ≤ j ≤ S−1

and ϵ ∈ E, the problem (14)-(15) has a solution

V (τ, z, ϵ) =
∑
β≥0

Vβ(τ, ϵ)
zβ

β!
,

holomorphic in Sd × D(0, ρ) × E for some ρ > 0, and verifying that Vβ(τ, ϵ) ∈ O(Ωβ × E) for
every β ≥ 0. In addition to this, there exists M > 0 such that

(31)
∑
β≥0

∥Vβ(τ, ϵ)∥β,ϵ,σ,Ωβ

ρβ

β!
≤M,

for every ϵ ∈ E.

Proof. From the classical theory of existence of solutions of nonlinear ODEs with complex pa-
rameters (see [12]), there exists δ > 0 such that whenever wj(ϵ) < δ for every 0 ≤ j ≤ S− 1 and
ϵ ∈ E , one has that the unique formal series solution of (26)-(27), u(x, ϵ) =

∑
β≥0 uβ(ϵ)x

β/β!,
belongs to C{x}, with a radius of convergence ρ > 0 independent of ϵ ∈ E . Moreover, there
exists M > 0 such that

(32)
∑
β≥0

uβ(ϵ)
ρβ

β!
≤M

for every ϵ ∈ E . Now observe that, by Proposition 1 and the remark following its proof, Cauchy
problem (14)-(15) has a formal solution

∑
β≥0 Vβ(τ, ϵ)z

β/β! such that Vβ ∈ Fβ,ϵ,σ,Ωβ
for every

β ≥ 0. In this situation, Proposition 2 ensures that for every β ≥ 0 we have ∥Vβ(τ, ϵ)∥β,ϵ,σ,Ωβ
=:

wβ(ϵ) ≤ uβ(ϵ), so that (31) is a clear consequence of (32). From here one can easily deduce that∑
β≥0 Vβ(τ, ϵ)z

β/β! indeed defines a holomorphic solution of (14)-(15) in Sd ×D(0, ρ)× E .

4 Analytic solutions of a threefold singular Cauchy problem

4.1 Laplace transform and asymptotic expansions

We recall the definition and main properties of Borel-Laplace summation process when consid-
ering formal power series with coefficients in a Banach space. For more details, see [4].

Definition 2. Let (E, ∥·∥E) be a complex Banach space. A formal power series

X̂(t) =
∞∑
j=0

aj
j!
tj ∈ E[[t]]

is 1-summable with respect to t in the direction d ∈ [0, 2π) if
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1.- the formal Borel transform of X̂,

B(X̂)(τ) :=

∞∑
j=0

aj
(j!)2

τ j ∈ E[[τ ]]

is absolutely convergent for |τ | < ρ, for some ρ > 0, and

2.- B(X̂)(τ) can be analytically continued with respect to τ in a sector Sd,δ := {τ ∈ C⋆ :
|d− arg(τ)| < δ} for some δ > 0. Moreover, there exist C,K > 0 such that∥∥∥B(X̂)(τ)

∥∥∥
E
≤ CeK|τ |, τ ∈ Sd,δ.

If this happens, then the Laplace transform of order 1 of B(X̂)(τ) in the direction d is given by

Ld(B(X̂))(t) := t−1

∫
Lγ

B(X̂)(τ)e−
τ
t dτ, Lγ = R+e

iγ ⊆ Sd,δ ∪ {0},

where γ depends on t and it is chosen so that cos(γ−arg(t)) ≥ δ1 > 0 for some positive constant
δ1. Under these settings, Ld(B(X̂)) is well-defined for

(33) t ∈ Sd,θ,R := {t ∈ C⋆ : |t| < R, |d− arg(t)| < θ/2},

for any π < θ < π+2δ and 0 < R < δ1/K, and it is known as the 1-sum of X̂(t) in the direction
d. It turns out to be a bounded holomorphic function in Sd,θ,R, and to admit X̂(t) as its Gevrey
asymptotic expansion of order 1 with respect to t in Sd,θ,R, meaning that for every θ1 < θ, one
can find C,M > 0 with ∥∥∥∥∥∥Ld(B(X̂))(t)−

n−1∑
p=0

ap
p!
tp

∥∥∥∥∥∥
E

≤ CMnn!|t|n,

for every n ≥ 1 and t ∈ Sd,θ1,R.

One can state several algebraic properties on the formal Borel transformation. Direct com-
putations when inserting a formal power series into the expressions below lead to prove the
following

Proposition 4. For every X̂(t) =
∑

n≥0 an
tn

n! , Ĝ(t) =
∑

n≥0 bn
tn

n! ∈ E[[t]], one has the following
(formal) equalities:

(τ∂2τ + ∂τ )(B(X̂)(τ)) = B(∂tX̂(t))(τ), ∂−1
τ (B(X̂))(τ) = B(tX̂(t))(τ),

τB(X̂)(τ) = B((t2∂t + t)X̂(t))(τ),

∫ τ

0
(BX̂)(τ − s)(BĜ)(s)ds = B(tX̂(t)Ĝ(t))(τ).

4.2 Analytic solutions of a singular Cauchy problem

Let S ≥ 1 be an integer. We set r1, r2 ∈ N with r1 ≥ 0 and r2 ≥ 1. Let b > 1, σ > 0 and r > 0.
We fix d ∈ R. Let Sd be a sector with infinite radius and bisecting direction d and Ωj :=

Sd ∪D(0, ρj), for 0 ≤ j ≤ S − 1, which verify Assumption (A). E stands for a fixed open sector
with finite radius rE > 0. We also fix γ ∈ [0, 2π) such that R+e

iγ ⊆ Sd ∪ {0}.
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Let S (resp. N ) be a finite subset of N3 (resp. of N2). For every (s, κ0, κ1) ∈ S, and (ℓ0, ℓ1) ∈
N , bs,κ0,κ1(z, ϵ), cℓ0,ℓ1(z, ϵ) are holomorphic bounded functions defined on D(0, ρ)×D(0, ϵ0), for
some ρ, ϵ0 > 0 .

For every ϵ ∈ E , we consider the following Cauchy problem(
(z∂z + 1)r1(t2∂t + t)r2 + 1

)
∂Sz Yd,ϵ(t, z) =

∑
(s,κ0,κ1)∈S

bs,κ0,κ1(z, ϵ)ϵ
r(κ0−s)ts(∂κ0

t ∂κ1
z Yd,ϵ)(t, z)

+
∑

(ℓ0,ℓ1)∈N

cℓ0,ℓ1(z, ϵ)ϵ
−r(ℓ0+ℓ1−1)tℓ0+ℓ1−1(Yd,ϵ(t, z))

ℓ1(34)

for given initial conditions

(35) (∂jzYd,ϵ)(t, 0) = Yd,ϵ,j(t), 0 ≤ j ≤ S − 1.

The initial conditions Yd,ϵ,j(t), 0 ≤ j ≤ S − 1 are constructed in the following way: for every
0 ≤ j ≤ S − 1, let Vj(τ, ϵ) be a holomorphic function defined in Ωj ×E . Moreover, assume there
exists δ > 0 with

(36) sup
ϵ∈E

∥Vj(τ, ϵ)∥j,ϵ,σ,Ωj
< δ, 0 ≤ j ≤ S − 1.

Then,
Yd,ϵ,j(t) := Ld

τ (Vj(τ, ϵ))(t),

where Laplace transform is taken with respect to variable τ in Vj(τ, ϵ). From (33) in Definition 2,
t 7→ Yd,ϵ,j(t) defines a holomorphic function for all t = |t|eiθ such that cos(θ − γ) ≥ δ1 > 0 and
|t| < |ϵ|r δ1

σξ(b) , for some δ1 > 0, where ξ(b) =
∑

n≥0
1

(n+1)b
.

We now introduce a new condition, namely
Assumption (B):

s ≥ 2κ0, S > b(s− κ0 + 2) + κ1 for every (s, κ0, κ1) ∈ S, ℓ1 ≥ 2 for every (ℓ0, ℓ1) ∈ N .

Remark: We find it adequate to clarify the role played by the assumptions above. While the
first inequality has to do with the condition appearing in the incoming Lemma 8, the second
and third ones are related to the conditions asked on the parameters appearing in Proposition 3,
when reducing the Cauchy problem (34)-(35) to the auxiliary one studied in Section 3.

The next result establishes the solution of (34)-(35) by means of the properties of Borel
transform and Proposition 3.

Theorem 1. Under Assumptions (A) and (B), let the initial data (35) be constructed as above.
Then, for every ϵ ∈ E, the problem (34)-(35) admits a holomorphic solution (t, z) 7→ Yd,ϵ(t, z)
defined in

S
d,θ,|ϵ|r δ1

σξ(b)

×D(0,
ρ

2
),

for any fixed π < θ < π + 2δ̃.

Proof. Let ϵ ∈ E . By means of the formal Borel transform with respect to t applied to equation
(34), and taking into account Proposition 4, this equation formally turns into

((z∂z + 1)r1τ r2 + 1) ∂Sz Vϵ(τ, z) =
∑

(s,κ0,κ1)∈S

bs,κ0,κ1(z, ϵ)ϵ
r(κ0−s)∂−s

τ (τ∂2τ + ∂τ )
κ0∂κ1

z Vϵ(τ, z)

+
∑

(ℓ0,ℓ1)∈N

cℓ0,ℓ1(z, ϵ)ϵ
−r(ℓ0+ℓ1−1)∂−ℓ0

τ (Vϵ(τ, z))
⋆ℓ1 .(37)
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Let Vj,ϵ(τ) := Vj(τ, ϵ) for every 0 ≤ j ≤ S − 1. We consider

(38) (∂jzVϵ)(τ, 0) = Vj,ϵ(τ) ∈ O(Ωj), 0 ≤ j ≤ S − 1,

the initial conditions associated to the equation (37). The equation (37) can be suitably rewritten
thanks to the two following technical lemmas. Their proof can be found in [26], Lemma 5 and
Lemma 6, so we omit them.

Lemma 7. Let Ω ⊆ C be an open set and u : Ω → C a holomorphic function. For every κ0 ≥ 0,
one has

(τ∂2τ + ∂τ )
κ0u(τ) =

2κ0∑
κ=κ0

aκ,κ0τ
κ−κ0∂κτ u(τ),

for some constants aκ,κ0 ∈ N, κ0 ≤ κ ≤ 2κ0.

Lemma 8. Let Ω ⊆ C be an open set and u : Ω → C a holomorphic function. We also fix
a, b, c ∈ N such that a ≥ b and a ≥ c. Let ∆ = a+ b− c. Then,

∂−a
τ (τ b∂cτu(τ)) =

∑
(b′,c′)∈O∆

αb′,c′τ
b′∂c

′
τ u(τ),

where O∆ is a finite subset of Z2 such that b′ − c′ = ∆, b′ ≥ 0, c′ ≤ 0 for every (b′, c′) ∈ O∆,
and where αb′,c′ ∈ Z.

From Assumption (B), equation (37) is rewritten as

((z∂z + 1)r1τ r2 + 1) ∂Sz Vϵ(τ, z) =
∑

(s,κ0,κ1)∈S

bs,κ0,κ1(z, ϵ)ϵ
r(κ0−s)

∑
(r′,p′)∈Os−κ0

αr′,p′τ
r′∂−p′

τ ∂κ1
z Vϵ(τ, z)

+
∑

(ℓ0,ℓ1)∈N

cℓ0,ℓ1(z, ϵ)ϵ
−r(ℓ0+ℓ1−1)∂−ℓ0

τ (Vϵ(τ, z))
⋆ℓ1 ,(39)

where Os−κ0 is a finite subset of N2 such that for every (r′, p′) ∈ Os−κ0 one has r′ + p′ = s− κ0,
and αr′,p′ ∈ Z.

We consider the Cauchy problem (39)-(38). From (36), we have Vj,ϵ ∈ Fj,ϵ,σ,Ωj for 0 ≤ j ≤
S−1. Moreover, (36) assures the verification of the first hypothesis in Proposition 3. In addition
to this, the remaining hypotheses in Proposition 3 are being verified from Assumption (B) and
the relationship among the indices involved. From Proposition 3 we learn that, as long as δ in
(36) is small enough, there is a holomorphic function on Sd ×D(0, ρ)× E for some ρ > 0,

(40) Vd(τ, z, ϵ) :=
∑
β≥0

Vβ(τ, ϵ)
zβ

β!
,

which solves (39)-(38). In addition to this, one has Vβ ∈ O(Ωβ × E) and

(41)
∑
β≥0

∥Vβ(τ, ϵ)∥β,ϵ,σ,Ωβ

ρβ

β!
< +∞.

Let β ≥ 0. From (41) and the definition of the norms involved (see Definition 1), there exists
C > 0 (not depending on ϵ nor β) such that

(42) |Vβ(τ, ϵ)| ≤ Cβ!

(
1

ρ

)β (
1 +

|τ |2

|ϵ|2r

)−1

e
σ

|ϵ|r rb(β)|τ |,
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for every τ ∈ Ωβ and ϵ ∈ E . If t = |t|eiθ, we deduce that∣∣∣∣∣
∫
Lγ

Vβ(τ, ϵ)e
− τ

t dτ

∣∣∣∣∣ ≤
∫ ∞

0
|Vβ(seiγ , ϵ)|e

− s
|t| cos(γ−θ)

ds

≤
∫ ∞

0
Cβ!

(
1

ρ

)β

e

(
σ

|ϵ|r ξ(b)−
δ1
|t|

)
s
ds,

when departing from t such that cos(γ−θ) ≥ δ1 > 0. If |t| < |ϵ|r δ1
σξ(b) , then the previous integral

converges. This implies that for every ϵ ∈ E , Ld
τ (Vβ(τ, ϵ))(t) is well defined for

t ∈ S
d,θ,|ϵ|r δ1

σξ(b)

,

for any π < θ < π + 2δ̃. Moreover, for every ϵ ∈ E ,

(t, z) 7→ Yd,ϵ(t, z) :=
∑
β≥0

Ld
τ (Vβ(τ, ϵ))(t)

zβ

β!

defines a holomorphic function on S
d,θ,|ϵ|r δ1

σξ(b)

× D(0, ρ2), for every π < θ < π + 2δ̃. From

the fact that Vd(τ, z, ϵ) is a solution of (37)-(38) and from Proposition 4 we conclude that
(t, z) 7→ Yd,ϵ(t, z) is a solution of (34)-(35) for every ϵ ∈ E .

5 Formal series solutions and Gevrey asymptotic expansions in
a complex parameter for a threefold Cauchy problem

5.1 Analytic solutions in a complex parameter for a Cauchy problem

Let S ≥ 1 be an integer. We fix r1, r2, r3 ∈ N with

r1 ≥ 0, r2 ≥ 1, and r3 ≥ 1,

and we put

r :=
r3
r2
.

We recall the definition of a good covering.

Definition 3. Let Ei be an open sector with vertex at 0 and finite radius ϵ0 for every 0 ≤ i ≤ ν−1.
We assume that Ei ∩ Ei+1 ̸= ∅ for 0 ≤ i ≤ ν − 1 (we define Eν := E0). When a family of sectors
{Ei}0≤i≤ν−1 constructed as before verifies ∪ν−1

i=0 Ei = U \ {0}, for some neighborhood U of 0 ∈ C,
it is known as a good covering in C⋆.

Definition 4. Let {Ei}0≤i≤ν−1 be a good covering in C⋆. Let T be an open sector with vertex
at 0 and finite positive radius rT . We also fix a family of open sectors

Udi,θ,ϵr0rT
= {t ∈ C⋆ : |t| < ϵr0rT , |di − arg(t)| < θ

2
},

with di ∈ [0, 2π) for 0 ≤ i ≤ ν − 1, and θ > π, with the following properties:

1.- for every i, 0 ≤ i ≤ ν − 1, one has arg(di) ̸= π (2k+1)
r2

, 0 ≤ k ≤ r2 − 1, and
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2.- for every 0 ≤ i ≤ ν − 1, t ∈ T and ϵ ∈ Ei, one has ϵrt ∈ Udi,θ,ϵr0rT
.

Under the previous settings, we say the family {(Udi,θ,ϵ0rT )0≤i≤ν−1, T } is associated to the good
covering {Ei}0≤i≤ν−1.

Let us consider a good covering in C⋆, {Ei}0≤i≤ν−1.

Let S (resp. N ) be a finite subset of N3 (resp. N2). For any fixed (s, κ0, κ1) ∈ S and
(ℓ0, ℓ1) ∈ N , let bs,κ0,κ1 , cℓ0,ℓ1 be holomorphic bounded functions on a polydisc D(0, ρ)×D(0, ϵ0),
for some ρ > 0.

For each 0 ≤ i ≤ ν − 1, we study the Cauchy problem(
(z∂z + 1)r1ϵr3(t2∂t + t)r2 + 1

)
∂Sz Xi(t, z, ϵ) =

∑
(s,κ0,κ1)∈S

bs,κ0,κ1(z, ϵ)t
s (∂κ0

t ∂κ1
z Xi) (t, z, ϵ)

+
∑

(ℓ0,ℓ1)∈N

cℓ0,ℓ1(z, ϵ)t
ℓ0+ℓ1−1(Xi(t, z, ϵ))

ℓ1 ,(43)

for given initial conditions

(44) (∂jzXi)(t, 0, ϵ) = φi,j(t, ϵ), 0 ≤ j ≤ S − 1,

where the functions φi,j(t, ϵ) are constructed as follows:
We take a family of sectors {{Udi,θ,ϵr0rT

}0≤i≤ν−1, T } associated to the good covering {Ei}0≤i≤ν−1.
For short, we write Udi instead of Udi,θ,ϵr0rT

. Let 0 ≤ i ≤ ν − 1.
For every 0 ≤ j ≤ S − 1, we consider a holomorphic function VUdi

,Ei,j defined in Ωj,i ×Ei, where

Ωj,i := Sdi ∪D(0, ρj)

and Sdi , ρj are as in Assumption (A).
We assume this function verifies:

a) there exist δ, σ > 0 with

(45) sup
ϵ∈Ei

∥∥∥VUdi
,Ei,j(τ, ϵ)

∥∥∥
j,ϵ,σ,Ωj,i

< δ.

b) There exists a function τ ∈ D(0, ρj) 7→ Vj(τ, ϵ) such that VUdi
,Ei,j(τ, ϵ) ≡ Vj(τ, ϵ) for every

0 ≤ i ≤ ν − 1, ϵ ∈ Ei, τ ∈ D(0, ρj), so that one has VUdi
,Ei,j(τ, ϵ) = VUdi+1

,Ei+1,j(τ, ϵ) for

every ϵ ∈ Ei ∩ Ei+1, τ ∈ D(0, ρj).

Let γi such that Lγi = R+e
γi
√
−1 ⊆ Sdi ∪ {0}. The function

(46) φi,j(t, ϵ) = Ydi,ϵ,j(ϵ
rt) :=

1

ϵrt

∫
Lγi

VUdi
,Ei,j(τ, ϵ)e

− τ
ϵrtdτ,

is well defined for every 0 ≤ j ≤ S − 1. φi,j turns out to be a holomorphic function defined on
T × Ei.

Theorem 2. Let the initial data (44) be constructed as above. Under Assumption (A) on the
sets Ωj,i, and Assumption (B) on the constants appearing in (43), if δ in (45) is small enough
the problem (43)-(44) has a holomorphic and bounded solution Xi(t, z, ϵ) on (T ∩ D(0, h′)) ×
D(0, ρ2)× Ei, for every 0 ≤ i ≤ ν − 1, for some h′ > 0.
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Moreover, for every 0 ≤ i ≤ ν − 1 there exist constants 0 < h′′ < h′, Ki,Mi > 0 (not
depending on ϵ), such that

(47) sup
t ∈ T ∩D(0, h′′)

z ∈ D(0, ρ
2
)

|Xi+1(t, z, ϵ)−Xi(t, z, ϵ)| ≤ Ki exp
(
− Mi

|ϵ|r3/(r1+r2)

)
,

for every ϵ ∈ Ei ∩ Ei+1 (where, by convention, Xν := X0).

Proof. Let 0 ≤ i ≤ ν and ϵ ∈ Ei. We consider the Cauchy problem (34), with initial conditions

(48) (∂jzYdi,ϵ)(t, 0) = Ydi,ϵ,j(t), 0 ≤ j ≤ S − 1.

From our hypotheses, Theorem 1 shows that the problem (34)-(48) has a solution (t, z) 7→
Ydi,ϵ(t, z), which is holomorphic and bounded in the set Udi,θ,h′|ϵ|r ×D(0, ρ2) for some h′ > 0 (not
depending on ϵ).

We put Xi(t, z, ϵ) = Ydi,ϵ(ϵ
rt, z) which defines a holomorphic and bounded function on (T ∩

D(0, h′))×D(0, ρ2)×Ei. We note that, by following the construction of Xi and applying Hartog’s
Theorem, one can see that Xi is holomorphic with respect to ϵ. Also, one easily checks that
Xi(t, z, ϵ) solves the problem (43)-(44) on (T ∩D(0, h′))×D(0, ρ2)× Ei.

In the second part of the proof, we obtain the estimates in (47).
Let 0 ≤ i ≤ ν. Following the procedure of construction for Xi(t, z, ϵ), one can write

Xi(t, z, ϵ) =
∑
β≥0

Xi,β(t, ϵ)
zβ

β!
,

where

Xi,β(t, ϵ) =
1

ϵrt

∫
Lγi

VUdi
,Ei,β(τ, ϵ)e

− τ
ϵrtdτ,

for every (t, z, ϵ) ∈ (T ∩D(0, h′))×D(0, ρ/2)×Ei. Here, the sequence (VUdi
,Ei,β(τ, ϵ))β≥0 consists

of the coefficients of the series in (40), and

VUdi
,Ei(τ, z, ϵ) :=

∑
β≥0

VUdi
,Ei,β(τ, ϵ)

zβ

β!

is the solution of the auxiliary problem (14)-(15), which is constructed in Proposition 3.
From assumption b) on the initial conditions and the recurrence formula (17), for every

β ≥ 0 we derive that the functions VUdi
,Ei,β, 0 ≤ i ≤ ν − 1, define a holomorphic function

Vβ(τ, ϵ) such that Vβ(τ, ϵ) = VUdi
,Ei,β(τ, ϵ) for every τ ∈ D(0, ρβ), ϵ ∈ Ei. For β ≥ 0, (t, ϵ) ∈

(T ∩D(0, h′))× (Ei ∩ Ei+1), this yields

Xi+1,β(t, ϵ)−Xi,β(t, ϵ) =
1

ϵrt

∫
L ρβ

2 ,γi+1

VUdi+1
,Ei+1,β

(τ, ϵ)e−
τ

ϵrtdτ

−
∫
L ρβ

2 ,γi

VUdi
,Ei,β (τ, ϵ)e

− τ
ϵrtdτ +

∫
C(

ρβ
2
,γi,γi+1)

Vβ(τ, ϵ)e
− τ

ϵrtdτ

 ,(49)

where L ρβ
2
,γi+1

:= [
ρβ
2 ,+∞)e

√
−1γi+1 , L ρβ

2
,γi

:= [
ρβ
2 ,+∞)e

√
−1γi , and C(

ρβ
2 , γi, γi+1) is an arc of

circle with radius
ρβ
2 connecting

ρβ
2 e

√
−1γi+1 and

ρβ
2 e

√
−1γi with a well chosen orientation.
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First, we give estimates for I1 = |(ϵrt)−1
∫
L ρβ

2 ,γi+1

VUdi+1
,Ei+1,β

(τ, ϵ)e−
τ
ϵrtdτ |. Direction γi+1

was chosen depending on ϵrt. In fact, one can affirm there exists δ1 > 0 with cos(γi+1 −
arg(ϵrt)) ≥ δ1, for every ϵ ∈ Ei+1 ∩ Ei and t ∈ T ∩D(0, h′). From (42), we obtain

I1 ≤ |ϵrt|−1

∫ ∞

ρβ/2
Ci+1β!

(
1

ρ

)β (
1 +

h2

|ϵ|2r

)−1

exp(
σ

|ϵ|r
rb(β)h− h

|ϵ|r|t|
cos(γi+1 − arg(ϵrt)))dh

≤ |ϵrt|−1

∫ ∞

ρβ/2
Ci+1β!

(
1

ρ

)β

exp

(
(σξ(b)− δ1

|t|
)
h

|ϵ|r

)
dh

= |t|−1Ci+1β!

(
1

ρ

)β exp
(
(σξ(b)− δ1

|t|)
ρβ
2|ϵ|r

)
δ1
|t| − σξ(b)

,

for some Ci+1 > 0. Moreover, let δ2 be a positive constant such that δ2 < δ1, and take
h′′ := δ1−δ2

σξ(b) > 0. Then, for t ∈ T ∩D(0, h′) with |t| < h′′ and every ϵ ∈ Ei ∩ Ei+1 one derives

(50) I1 ≤ δ−1
2 Ci+1β!

(
1

ρ

)β

exp(−δ2
ρβ
2h′

1

|ϵ|r
).

Estimates for I2 = |(ϵrt)−1
∫
L ρβ

2 ,γi

VUdi
,Ei,β (τ, ϵ)e

− τ
ϵrtdτ | follow from similar calculations. In

this step we arrive at the existence of Ci > 0 such that

(51) |I2| ≤ δ−1
2 Ciβ!

(
1

ρ

)β

exp(− δ2
2h′

ρβ
|ϵ|r

),

for every t ∈ T ∩D(0, h′′) and ϵ ∈ Ei ∩ Ei+1.

Finally, we study I3 = |ϵrt|−1
∣∣∣∫

C(
ρβ
2
,γi,γi+1)

Vβ(τ, ϵ)e
− τ

ϵrtdτ
∣∣∣. From (42), we have

I3 ≤ |ϵrt|−1

∣∣∣∣∣∣
∫ γi

γi+1

Cβ!

(
1

ρ

)β
(
1 +

ρ2β
4|ϵ|2r

)−1

e
σrb(β)

ρβ
2|ϵ|r e

−
ρβ
2

1
|ϵrt| cos(θ−arg(ϵrt)) ρβ

2
dθ

∣∣∣∣∣∣ .
By construction, the arc of circle C(

ρβ
2 , γi, γi+1) is chosen so that cos(θ−arg(ϵrt)) ≥ δ1, for every

θ ∈ [γi, γi+1] (if γi < γi+1), θ ∈ [γi+1, γi] (if γi+1 < γi), for every t ∈ T and all ϵ ∈ Ei ∩ Ei+1.
From the previous inequality we derive

I3 ≤ |γi+1 − γi|Cβ!
(
1

ρ

)β ρβ
2

1

|ϵrt|
exp

(
−
(
δ1
|t|

− σξ(b)

)
ρβ
2

1

|ϵ|r

)
≤ |γi+1 − γi|Cβ!

(
1

ρ

)β ρβ
2

1

|ϵrt|
exp

(
−δ2

4

ρβ
|ϵ|r|t|

)
exp

(
− δ2
|ϵ|rh′

ρβ
4

)
,

for all t ∈ T ∩D(0, h′), |t| < δ1−δ2
σξ(b) and every ϵ ∈ Ei ∩ Ei+1.

From (10) we derive

(52) I3 ≤ |γi+1 − γi|Cβ!
(
1

ρ

)β 2e−1

δ2
exp

(
− δ2
|ϵ|rh′

ρβ
4

)
,

for t ∈ T ∩D(0, h′), |t| < δ1−δ2
σξ(b) and every ϵ ∈ Ei ∩ Ei+1.



21

Taking into account (49), (50), (51) and (52) we arrive at

|Xi+1(t, z, ϵ)−Xi(t, z, ϵ)| ≤
∑
β≥0

|Xi+1,β(t, ϵ)−Xi,β(t, ϵ)|
|z|β

β!

≤ Ci + Ci+1

δ2

∑
β≥0

e
− δ2

2h′
ρβ
|ϵ|r

(
1

2

)β

+ |γi+1 − γi|C
2e−1

δ2

∑
β≥0

e
− δ2

4h′
ρβ
|ϵ|r

(
1

2

)β

,(53)

for every t ∈ T ∩D(0, h′), |t| < δ1−δ2
σξ(b) , ϵ ∈ Ei ∩ Ei+1 and z ∈ D(0, ρ2).

The particular choice of ρβ := 1/(2(β+1)r1/r2), made in Assumption (A), makes it necessary
to work with the so called general Dirichlet series and apply the following

Lemma 9. Let 0 < a < 1 and α > 0. There exist K,M > 0 and δ > 0 such that∑
κ≥0

e
− 1

(κ+1)α
1
ϵ aκ ≤ K exp

(
−Mϵ−

1
α+1

)
,

for every ϵ ∈ (0, δ].

The proof of this lemma is postponed until the end of the current section not to interfere
the line of arguments.

From (53) and Lemma 9 we deduce that there exist Ki,Mi > 0 (not depending on ϵ) such
that

|Xi+1(t, z, ϵ)−Xi(t, z, ϵ)| ≤ Kie
− Mi

|ϵ|r3/(r1+r2) ,

for every t ∈ T ∩ D(0, h′), |t| ≤ δ1−δ2
σξ(b) , ϵ ∈ Ei ∩ Ei+1, if ϵ0 is small enough, and |z| ≤ ρ

2 , from
where we conclude.

The proof of Lemma 9 rests on the following results.

Lemma 10 (Watson’s Lemma. Exercise 4, page 16 in [3]). Let b > 0 and f : [0, b] → C be a
continuous function having the formal expansion

∑
n≥0 ant

n ∈ C[[t]] as its asymptotic expansion
of Gevrey order κ > 0 at 0, meaning there exist C,M > 0 such that∣∣∣∣∣f(t)−

N−1∑
n=0

ant
n

∣∣∣∣∣ ≤ CMNN !κ|t|N ,

for every N ≥ 1 and t ∈ [0, δ], for some 0 < δ < b.
Then, the function

I(x) =

∫ b

0
f(s)e−

s
xds

admits the formal power series
∑

n≥0 ann!x
n+1 ∈ C[[x]] as its Gevrey asymptotic expansion of

Gevrey order κ+ 1 at 0, it is to say, there exist C̃, K̃ > 0 such that∣∣∣∣∣I(x)−
N−1∑
n=0

ann!x
n+1

∣∣∣∣∣ ≤ C̃K̃N+1(N + 1)!1+κ|x|N+1,

for every N ≥ 0 and x ∈ [0, δ′] for some 0 < δ′ < b.

Lemma 11 (Exercise 3, page 18 in [3]). Let δ, q > 0, and ψ : [0, δ] → C be a continuous function.
The following assertions are equivalent:
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1. There exist C,M > 0 such that |ψ(x)| ≤ CMnn!q|x|n, for every n ∈ N, n ≥ 0 and
x ∈ [0, δ].

2. There exist C ′,M ′ > 0 such that |ψ(x)| ≤ C ′e−M ′/x
1
q
, for every x ∈ (0, δ].

Proof of Lemma 9: Let f : [0,+∞) → R be a C1 function. From the Euler-Maclaurin
formula, one has

(54)
n∑

κ=0

f(κ) =
1

2
(f(0) + f(n)) +

∫ n

0
f(t)dt+

∫ n

0
B1(t− ⌊t⌋)f ′(t)dt,

for every n ∈ N, where B1 is the Bernoulli polynomial B1(s) = s − 1
2 . Here, ⌊·⌋ stands for the

floor function.
Let ϵ > 0. If we choose f in (54) to be f(s) = e

− 1
(s+1)α

1
ϵ as, for s ≥ 0, one has

n∑
κ=0

e
− 1

(κ+1)α
1
ϵ aκ =

1

2
(e−

1
ϵ + e

− 1
(n+1)α

1
ϵ an)

+

∫ n

0
e
− 1

(t+1)α
1
ϵ at
[
1 +B1(t− ⌊t⌋)

(
α

ϵ(t+ 1)α+1
+ ln(a)

)]
dt,

for every n ∈ N. Taking the limit when n tends to infinity in the previous expression we arrive
at an equality for a convergent series:∑

κ≥0

e
− 1

(κ+1)α
1
ϵ aκ

=
1

2
e−

1
ϵ +

∫ ∞

0

[
e
− 1

(t+1)α
1
ϵ at +B1(t− ⌊t⌋)e−

1
(t+1)α

1
ϵ at
(

α

ϵ(t+ 1)α+1
+ ln(a)

)]
dt

≤ 1

2
e−

1
ϵ +

∫ ∞

0
e
− 1

(t+1)α
1
ϵ atdt+

1

2

∫ ∞

0
e
− 1

(t+1)α
1
ϵ at
(

α

ϵ(t+ 1)α+1
+ | ln(a)|

)
dt.

Let I1(ϵ) (resp. I2(ϵ)) be the first (resp. second) integral appearing on the right hand side of the
preceding inequality. The proof is reduced to demonstrate the existence of δ > 0 and K,M > 0
such that

(55) I1(ϵ), I2(ϵ) ≤ Ke
− M

ϵ1/(α+1) ,

for every ϵ ∈ (0, δ]. The change of variable s := 1
(t+1)α in I1(ϵ) and I2(ϵ) allows us to write

I1(ϵ) =

∫ 1

0
e−

s
ϵ f1(s)ds, with f1(s) :=

1

aα

1

s
1
α
+1
e
ln(a) 1

s1/α , 0 < s ≤ 1,

and

I2(ϵ) =

∫ 1

0
e−

s
ϵ f2,1(s)ds+

1

ϵ

∫ 1

0
e−

s
ϵ f2,2(s)ds,

with f2,1(s) := | ln(a)|f1(s) and f2,2(s) :=
1

a
e
ln(a) 1

s1/α , 0 < s ≤ 1, for every ϵ > 0. It is clear that

|f1(s)|, |f2,1(s)| and |f2,2(s)| may be estimated by C ′ exp
(
−M ′/s1/α

)
for some C ′,M ′ > 0 and

for every s ∈ (0, 1]. From Lemma 11, we get that f1, f2,1, f2,2 have 0̂ as their formal asymptotic
expansion of Gevrey order α. Lemma 10 indicates that both I1(ϵ) and ϵI2(ϵ) admit 0̂ as their
Gevrey asymptotic expansion of order α+1, and the same is true for I2(ϵ). Again, by Lemma 11,
one derives that there exist C ′′,M ′′ > 0 such that |I1(ϵ)| and |I2(ϵ)| can be upper bounded by

C ′′e
− M′′

ϵ1/(α+1) , from where we can easily conclude (55). 2
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5.2 Existence of formal series solutions in the compex parameter for the
threefold singular problem

This final subsection is devoted to prove the main result of the present work, the existence of a
formal power series X̂(t, z, ϵ) which asymptotically represents the solution of problem (43)-(44)
in a precise sense, for every 0 ≤ i ≤ ν − 1. Indeed, under the same notation as in the previous
subsection, the formal power series X̂(t, z, ϵ) belongs to O((T ∩ D(0, h′′)) × D(0, ρ2))[[ϵ]], and

Xi(t, z, ϵ), solution of (43) − (44) admits X̂ as its Gevrey asymptotic expansion of order r1+r2
r3

on Ei, for every 0 ≤ i ≤ ν − 1.
The proof rests on a cohomological criterion for summability of formal series with coefficients

in a Banach space, known in the literature as Malgrange-Sibuya theorem. For a reference,
see [4], [37].

Theorem 3. (MS)
Let (E, ∥·∥E) be a complex Banach space over C. Let {Ei}0≤i≤ν−1 be a good covering in

C⋆. For every 0 ≤ i ≤ ν − 1, let Gi be a holomorphic function from Ei into E, and let the
cocycle ∆i(ϵ) := Gi+1(ϵ)−Gi(ϵ) be a holomorphic function from Zi := Ei∩Ei+1 into E (with the
convention that Eν = E0 and Gν = G0). We assume that:

1. Gi(ϵ) is bounded as ϵ ∈ Ei tends to 0, for every 0 ≤ i ≤ ν − 1,

2. ∆i has an exponential decreasing of order s > 0 on Zi, for every 0 ≤ i ≤ ν − 1, meaning
there exist Ci, Ai > 0 such that

∥∆i(ϵ)∥E ≤ Cie
− Ai

|ϵ|1/s ,

for every ϵ ∈ Zi and 0 ≤ i ≤ ν − 1.

Then, there exists a formal power series Ĝ(ϵ) ∈ E[[ϵ]] such that Gi(ϵ) admits Ĝ(ϵ) as its asymp-
totic expansion of Gevrey order s on Ei, for every 0 ≤ i ≤ ν − 1.

The last assertion in Theorem 3 means that if we write Ĝ(ϵ) =
∑

n≥0Gnϵ
n and fix 0 ≤ i ≤

ν − 1, then for every proper and bounded subsector Ti of Ei and all N ≥ 1, one has∥∥∥∥∥Gi(ϵ)−
N−1∑
n=0

Gnϵ
n

∥∥∥∥∥
E

≤ KMNN !s|ϵ|N , ϵ ∈ Ti

for some positive constants K,M > 0, not depending on N .
We now state the main result of this paper. Let E be the Banach space of holomorphic and

bounded functions defined on (T ∩D(0, h′′))×D(0, ρ2), equipped with the supremum norm, for
h′′, ρ > 0 and T as in Theorem 2.

Theorem 4. Under the hypotheses made on Theorem 2, if h′′ > 0 is small enough, there exists
a formal power series

X̂(t, z, ϵ) :=
∑
κ≥0

Hκ(t, z)
ϵκ

κ!
∈ E[[ϵ]],

which formally solves the threefold singular problem (43)-(44) and is the Gevrey asymptotic
expansion of order r1+r2

r3
of the E-valued function ϵ ∈ Ei 7→ Xi(t, z, ϵ) constructed in Theorem 2,

for every 0 ≤ i ≤ ν − 1.
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Proof. Let us consider the family (Xi(t, z, ϵ))0≤i≤ν−1 constructed in Theorem 2. For every
0 ≤ i ≤ ν−1 and ϵ ∈ E , we put Gi(ϵ) := (t, z) 7→ Xi(t, z, ϵ), which belongs to the space E. From
(47), we derive the cocycle ∆i = Gi+1(ϵ) − Gi(ϵ) is exponentially decreasing of order r1+r2

r3
on

the set Zi = Ei ∩ Ei+1, for every 0 ≤ i ≤ ν − 1.
From Theorem (MS), one can guarantee the existence of Ĝ(ϵ) ∈ E[[ϵ]], series of asymptotic

expansion of order r1+r2
r3

of Gi(ϵ), on Ei, for 0 ≤ i ≤ ν − 1. Let us define

Ĝ(ϵ) := X̂(t, z, ϵ) =
∑
κ≥0

Hκ(t, z)
ϵκ

κ!
.

It only rests to prove that X̂ is a formal solution of (43)-(44). From the fact that Xi(ϵ)
admits X̂(ϵ) as its asymptotic expansion at 0 on Ei, one has

(56) lim
ϵ → 0
ϵ ∈ Ei

sup
(t,z)∈(T ∩D(0,h′′))×D(0,ρ/2)

∣∣∣∂ℓϵXi(t, z, ϵ)−Hℓ(t, z)
∣∣∣ = 0,

for every 0 ≤ i ≤ ν − 1 and ℓ ≥ 0.
We fix 0 ≤ i ≤ ν−1. By construction, Xi satisfies (43)-(44). We differentiate in the equality

(43) ℓ times with respect to ϵ. By means of Leibniz’s rule, we deduce that ∂ℓϵXi(t, z, ϵ) satisfies

min{ℓ,r3}∑
h=1

ℓ!

(ℓ− h)!h!
r3(r3 − 1) · . . . · (r3 − h+ 1)ϵr3−h(z∂z + 1)r1(t2∂t + t)r2∂Sz ∂

ℓ−h
ϵ Xi(t, z, ϵ)

+ ϵr3(z∂z + 1)r1(t2∂t + t)r2∂Sz ∂
ℓ
ϵXi(t, z, ϵ) + ∂Sz ∂

ℓ
ϵXi(t, z, ϵ)

=
∑

(s,κ0,κ1)∈S

 ∑
h1+h2=ℓ

ℓ!

h1!h2!
(∂h1

ϵ bs,κ0,κ1(z, ϵ))t
s(∂κ0

t ∂κ1
z ∂h2

ϵ Xi(t, z, ϵ))



+
∑

(ℓ0,ℓ1)∈N

 ∑
h0+...+hℓ1

=ℓ

ℓ!

h0! · · ·hℓ1 !
(∂h0

ϵ cℓ0,ℓ1(z, ϵ))t
ℓ0+ℓ1−1

ℓ1∏
j=1

∂
hj
ϵ Xi(t, z, ϵ)

 ,

(57)

for every ℓ ≥ 0 and (t, z, ϵ) ∈ (T ∩D(0, ρ2))×D(0, ρ2)×Ei. We take ℓ ≥ r3 and let ϵ→ 0 in (57).
From (56) one gets a recursion formula verified by the elements in (Hℓ)ℓ≥0 given by

(z∂z + 1)r1(t2∂t + t)r2∂Sz

(
Hℓ−r3(t, z)

(ℓ− r3)!

)
+ ∂Sz

(
Hℓ(t, z)

ℓ!

)

=
∑

(s,κ0,κ1)∈S

 ∑
h1+h2=ℓ

(∂h1
ϵ bs,κ0,κ1)(z, 0)

h1!
ts∂κ0

t ∂κ1
z

(
Hh2(t, z)

h2!

)

(58) +
∑

(ℓ0,ℓ1)∈N

 ∑
h0+...+hℓ1

=ℓ

(∂h0
ϵ cℓ0,ℓ1)(z, 0)

h0!
tℓ0+ℓ1−1

ℓ1∏
j=1

(
Hhj

(t, z)

hj !

) ,

for every ℓ ≥ r3, and (t, z) ∈ (T ∩D(0, h′′))×D(0, ρ/2). From holomorphy of every bs,κ0,κ1(z, ϵ)
and cℓ0,ℓ1(z, ϵ) with respect to ϵ near the origin, we have

(59) bs,κ0,κ1(z, ϵ) =
∑
h≥0

(∂hϵ bs,κ0,κ1)(z, 0)

h!
ϵh, cℓ0,ℓ1(z, ϵ) =

∑
h≥0

(∂hϵ cℓ0,ℓ1)(z, 0)

h!
ϵh,
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for every (z, ϵ) in a neighborhood of the origin in C2. In order to conclude, from recursion (58)
and (59), we deduce X̂(t, z, ϵ) =

∑
κ≥0Hκ(t, z)

ϵκ

κ! is a formal solution of (43)-(44).
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