Inverse problems for some systems of parabolic equations
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Abstract: We study the systend, — A, = ﬁ(t), where) <z <, ¢t > 0, assum-
ing thata(0,t) = #(t), @(r,t) = 0, andd(x,0) = §(x). The coupling matrixA is

a real, diagonalizable matrix for which all of the eigenesare positive reals. The
question isWhat extra data determine the three unknown vector furmlﬁﬁnﬁ, g}
uniquely?This problem is solved and an analytical method for the reppef the
above three vector functions is presented.
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1. Introduction
Consider the system

iy = Aty = h(t) for (z.2) € [0,] x [0, 00), (1.1)

with @(0,¢) = 7(t),  d(mt)=0, and @(z,0) = g(z),

Wherefz, 7:Rso — RY andg: [0, 7] — RY for someN > 2 are unknown, with

J(z) = (1(2), g2(), .., gn ()"

The solution of system (1.1) is a real vector function givgn b
ﬁ(l‘, t) = (ul(xa t)v UQ(fE, t)) Y UN(ZE, t))T

The regularity ofu is related to the smoothness {fi, U,g}. Similar to the work
in [4], which was devoted to the studies of the single paiabefuation of this
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kind, in the present work we are not focused on the well-posssiof (1.1). We are
interested in the following inverse problem:

What information about the solutianis sufficient

to uniquely determine the vector functioﬁ% U,G}?

Inverse problems for the scalar heat equation have beeedtextensively (see
[1], [2], [4] and the references therein). An inverse soynaeblem for the multidi-
mensional heat equation in which the source was assumeditbribee sum of point
sources was considered in [3]. The inverse problem theraavisd the location
and the intensity of these point sources from the experiateata. The existence of
stationary solutions of certain systems of parabolic aqnatwas studied actively
in recent years, see for instance [5] and [6] and the refeetiwerein.

We will use( , ) to denote the standard inner productiono, ]. That is,

(G, F) = /07T G(z)F(x)dx. (1.2)

Clearly, (1.2) induces the following norm drt|0, r|:

17l =/ [ Paye

We extend the inner product notation to the situation whieefitst argument is a
vector function, for which each component is an element46, «]. In this case
the result is obtained by computing the inner product of eashponent with the
second argument. For example,

@ F) = ({0 P low F))

Similarly,

(@(-, ), F) = /0 i P (2)da

- </Oﬂ ul(x,t)F(x)dx,...,/OWuN(x,t)F(x)dx>T,

giving a vector valued function af



Let f,.(z) = \/gsin(mx) forme N={1,2,...}. Then
7r

& fm

T2 (z) = m2fy,(x) for 0 <z <m,
T

fm(0) = fn(7) =0, |fml/=1 and —

so that{ f,,,(x) }2o_, is the orthonormal set of the eigenfunctions of the one dimen
sional negative Dirichlet Laplacian on the inter{@lr].

Let y € (0,7) such that is irrational. (This happens, for example,ifis
s
rational.) Then it can be shown that

fm(y) #0 (1.4)

for all m € N.
Let

U () = (U(,t), fm)

for m € N. Our main statement is as follows.

Theorem 1. SupposeV > 2 and A is a constant realV x /N diagonalizable matrix
for which all of the eigenvalues are positive reals. Thenking the functions

{ur(t), as(t), uly, 1)}, (1.5)

forall ¢ > 0, is sufficient to uniquely determine the tripﬁé, U, g}.

This theorem is a generalization of Theorem 1 of [4], whictallsshes the corre-
sponding result for a single heat equation (i.e. #or= 1). Let us proceed to the
proof of our main result.

2. Proof.

Proof of Theorem 1EFrom our assumptions, it follows that there exists an ikt
real matrixP such that

PAP™' = D =diag(d,,...,dy),
whered,, d, . ..,dy > 0 are the eigenvalues of and, hence,
PA = DP. (2.1)
By means of (2.1), multiplying the partial differential eqion in (1.1) on the left
by P gives B
Pty — DPi,, = Ph(t). (2.2)
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Let us introduce new vector functions:
i(z,t) == Pii(z,t) and h(t) := Ph(t).

This allows us to write (2.2) (which is simply the PDE portioithe main system
(1.1)) in terms ofu andh. Before doing so, we define

o(t) :== Pu(t) and g(x):= Pg(z).
Now we can write the system in terms of the new variables:
ou 0*u -
5 Paz= h(t),
with  @(0,t) =o(t),  a(x,t)=0 and (z,0) = g(x).

(2.3)

The reason that we have done this is that (2.3) consistsfolly decoupled scalar
equations, allowing for solutions to be more easily obtdine
Form e N={1,2,...} let

ﬂM(t) = (ﬁ(-,t),fm> and g, = <§~]> fm> € RNa

where the inner product is defined in (1.3). It follows that

9(@) =) Gmfl2). (2.4)
We look for the solution to (2.3) in the form
i(w,t) = 3 ) ) = Y (A1), Fon ) ). (2.5)

It is a standard result that such a solution exists. Takiegirther product off,,
with each side of the system of partial differential equagion (2.3) yields

ou 0*u -

wherel(z) = 1forall z € [0, ]. Letting

cm = (1, fn) = /07T fm(x)dx = (2.7)

V22 ifmisodd
0 if m is even,
we rewrite (2.6) as
T ou 0 ~

i E(x, t) fon(z)dx — /O7r D@(:E,t)fm(x)dx = h(t)cpm.
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, - . o . dty, o
Assuming the sufficient regularity af, the first integral glvess—t. Using integra-
tion by parts twice on the second integral, we arrive at

dli;( ) + DmPli, () = D f1,(0)5(t) + cmhl(t), (2.8)

for m € N. Equation (2.8) decouples int§¥ scalar linear equations of the form
y' + Ky = a(t), which can be easily solved. The initial condition for (28)

U (0) = (a(:,0), fm) = (g; fm) = Gm- (2.9)

Recall that for a diagonal matrix, such Bs= diag(ds, ...,dy), and a scalar
m?t, exponentiation is termwise, so that

_ _ _ 2
g Dm*t dlag< dlmt,...,edet>.

From (2.8) we calculate that

lm(t) = PG 4 / o [Df;n(ow(s)ﬂmﬁ(s)} ds.  (2.10)
0

We now suppose that
{u (1), us(t), uly, t)}

(referred to as the data) are known, and we set about cotisgfibe unknowns
{E, 7 g}. Let
Fl (t) = ﬂl(t) — eﬁDtgl and Fg(t) = ag(t) — eﬁthgg. (211)

Then Equation (2.10), fan = 1 andm = 3, gives

Bi(t) = / e D9 [D F10)5(s) + clﬁ(s)] ds o1
0 2.12

t
and Fg(t):/ e [ Df(0)3(s) + ex(s)) ds

0
respectively. By differentiating the formulas in (2.12daearranging, we obtain
Df{(0)a(t) + exh(t) = ”t[&wmﬂ,

and D f3(0)i(t) + csh(t) = thd [ethF(ﬂ

(2.13)

We treat (2.13) as aN-dimensional linear system with unknowng) and h(t).
Its2N x 2N coefficient matrix)/ has the block form

_ Df{(O) el
Af‘(Dﬁm>cﬂ)’

5



where [ is the N x N identity matrix andf/ (0) = m\/g. Since each of the

four blocks in this representation dff are diagonal, an easy computation gives
det M = ( ) det D # 0. It now follows that system (2.13) admits a unique so-

lution, meaning that and/ are uniquely determined by the right-hand sides of
(2.13).
Note that form = 1, 3, we have

) = (00 ). f) = (P8 fo) = [ P, t) )
=P ﬂﬁx m(2)dx = P, (t).
| st 0
Also, from the definition ofj,, in (2.9), we have
gm - ﬂm(o) = Pﬁm(o)

This means thaf’; (t) and Fs(t), as defined in (2.11), can be calculated from the
data in (1.5). This, in turn, means thgt) andh(t) can be computed from the data.
We then calculate

#(t) =P 'o(t) and h(t) =P h(b).
Now we work towards determiningin terms of the data. By combining (2.5) and

(2.10) atr = y, we have

= e P fuy) + (Y, 1), (2.14)

m=1

where
me / & D= D 1 (0)5(s) + enhi(s)]ds

an expression written in terms of known functions (sin@adh have already been
calculated from the data). Also, noting thaty,t) = Pui(y,t), it is clear that the
left side of (2.14) is determined by the data (1.5). Thusptilg unknowns in (2.14)
areg,, form € N.

LetG(y,t) = u(y,t) — w(y,t). Theng(y,t) is known as well and, from (2.14),
satisfies

fDm2t~
Z In ) (2.15)
P fi(y) + e P g faly) + € P s fa(y) + .
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We now perform a sequence of limits. The first limit is simpK/@&y, ) ast ap-
proacheso, which equalgj; f1(y). That is,

gif1(y) = lim [€”'q(y, 1)] .

For the second limit, we subtract the first term of the seme@i15) to the other
side and multiply by &, so that the limit giveg, f»(y). That is,

G2f2(y) = lim € [q(y,t) —e g1 f1(y)] .

=1l
t—o00
Continuing in this fashion, we are able to calculgtgf,.(y) for eachm € N.

By Equation (1.4), eaclf,,(y) is non-zero and s@,, has now been determined
for eachm € N. Then, by (2.4) the vector functiof is determined. Finally,

glx) = P~1g(x).
Thus, the triple{h(t),ﬁ(t),gj(:c)} is uniquely determined and can in fact be
calculated from the given dafai; (t), us(t), u(y,t)}, t > 0. |

Remark: We note that the initial data could B&;(t), @;(t), @(y, )}, as long as the
resulting matrix)/ is non-singular, which is the case as long as2he2 matrix

= (i )

is non-singular. Noting that’ (0) = m\/j and that:,, is given in (2.7), it follows
s
thatM* is non-singular as long @s# j and at least one afand; is odd. In such a

—

case, it would still be possible to calculaﬁé(t), v(t), g(x)} from the data.
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