1. In this problem proceed directly from the axioms for a field and a vector space. Let \(V \) be a vector space over a field \(F \). Suppose for some \(c \in F \) and \(\xi \in V \) we have \(c\xi = 0 \). Prove that \(c = 0 \) or \(\xi = 0 \).

2. (a) Prove directly that
\[
\rho_1(\xi) = |\xi^1| + \cdots + |\xi^n| \\
\rho_2(\xi) = \sqrt{(\xi^1)^2 + \cdots + (\xi^n)^2}
\]
are equivalent norms on \(\mathbb{R}^n \). Here \(\xi = (\xi^1, \ldots, \xi^n) \in \mathbb{R}^n \).

(b) Let \(V \) be a vector space with equivalent norms \(\rho_1, \rho_2 \). Prove that a subset \(C \subset V \) is compact in the metric space topology determined by \(\rho_1 \) if and only if it is compact in the metric space topology determined by \(\rho_2 \).

3. Let \(\rho_1, \rho_2 \) be norms on a real vector space \(V \). Prove that \(\rho_1, \rho_2 \) are equivalent if and only if the identity maps
\[
id_V: (V, \rho_1) \rightarrow (V, \rho_2) \\
id_V: (V, \rho_2) \rightarrow (V, \rho_1)
\]
are continuous.

4. Let \(V \) be the vector space of bounded continuous functions \(f: (0, 1) \rightarrow \mathbb{R} \) with the sup norm \(\|f\| = \sup_{x \in (0,1)} |f(x)| \). Consider the sequence \(\{f_n\}_{n=1}^\infty \subset V \) defined by \(f_n(x) = x^n \). Is \(\{f_n\} \) a Cauchy sequence? If so, does it have a limit in \(V \)? What is it?

5. Consider the function \(f: \mathbb{A}^2 \rightarrow \mathbb{R} \) defined by
\[
f(x, y) = \begin{cases}
\frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0); \\
0, & (x, y) = (0, 0).
\end{cases}
\]
Is \(f \) continuous at \((0, 0) \)? Do all directional derivatives exist at \((0, 0) \)?
6. Give an example of each of the following or prove that no such exists.

(a) A continuous function \(f : (0, 1) \to \mathbb{R} \) which is not differentiable.

(b) A differentiable function \(f : (0, 1) \to \mathbb{R} \) which is not continuous.

(c) A function \(f : \mathbb{R}^2 \setminus \{(0, 0)\} \to \mathbb{R} \) such that

\[
\lim_{y \to 0} \lim_{x \to 0} f(x, y)
\]

exists but

\[
\lim_{(x, y) \to (0, 0)} f(x, y)
\]

does not exist.

7. In this problem you will explore three ways to associate a shape to a function. If \(X, Y \) are sets and \(f : X \to Y \) a function, then

1. the image of \(f \) is the subset \(f(X) \subset Y \),
2. the preimage of \(c \in Y \) is the subset \(f^{-1}(c) \subset X \), and
3. the graph of \(f \) is the subset

\[
\{(x, f(x)) : x \in X\} \subset X \times Y.
\]

Construct the unit circle \(S \subset \mathbb{R}^2 \) in each of these three ways. In other words, find sets \(X, Y \) and functions \(f : X \to Y \) (and for the preimage the point \(c \)) which realize \(S \subset \mathbb{R}^2 \) as an image, preimage, and graph. (Question: Can you realize the entire circle with a single function in each of the three ways, or only a subset of the circle?)

8. Let \(S \) be a metric space and \(W \) a Banach space. Let \(V \) be the vector space of bounded continuous functions \(\xi : S \to W \) with norm

\[
\|\xi\|_V = \sup_{s \in S} \|\xi(s)\|_W.
\]

(a) Prove that \(V \) is a Banach space. (We did several parts of this in lecture.)

(b) Identify the Banach space \(V \) in case \(S \) is a finite set. How does the metric on \(S \) enter?