M375 T: Problem Set #5

Solutions to Selected Problems

#1

From problem set 4, you know that if

\[\|A\|_1 = \sup_{v \neq 0} \frac{\|Av\|_2}{\|v\|_2} \] where \(\|\cdot\|_2 \) is the Euclidean norm on \(\mathbb{R}^n \),

then \((M_n, \|\cdot\|_1) \) is a Banach space and

\[\|AB\|_1 \leq \|A\| \|B\|_1. \] (this is called a Banach algebra).

Then if \(S_m = \sum_{i=m}^{\infty} \frac{A^i}{i!} \), and \(m \geq N \), then

\[\|S_m - S_{m'}\| \leq \sum_{i=m'}^{\infty} \frac{\|A^i\|}{i!} \leq \sum_{i=m'}^{\infty} \frac{\|A^i\|}{i!} \to 0 \] as \(N \to \infty \),

since \(\sum_{i=0}^{\infty} \frac{\|A^i\|}{i!} = e^\|A\| < \infty \).

Thus \(\{S_m\} \) is Cauchy, and so has a limit \(\exp(A) \in M_n \), with \(\|S_m - \exp(A)\| \to 0 \).

#2

You can check that

\[\exp(A) = \begin{pmatrix} \cosh 2 & \frac{1}{2} \sinh 2 \\ 2 \sinh 2 & \cosh 2 \end{pmatrix} \]

#3

Assume \(d_1 \exp : M_n \to M_n \) exists. Then for \(B \in M_n \),

\[d_1 \exp (B) = \lim_{x \to 0} \frac{\exp(I + xB) - \exp I}{x} \]

We know that \(\exp(I + xB) = \sum_{i=0}^{\infty} \frac{(I + xB)^i}{i!} = \sum_{i=0}^{\infty} \frac{1}{i!} \sum_{j=0}^{i} \binom{i}{j} x^j B^j \)
For \(|x| < \frac{1}{2\|B\|} \), \(\frac{1}{2} \sum_{i=2}^{\infty} \|x_iB_i\| \leq x^2 \|B\|^2 \sum_{i=2}^{\infty} x_iB_i^{-2} = x^2 \frac{\|B\|^2}{1 - x\|B\|} \leq x^2 \cdot 2\|B\|^2

It follows that

\[
\| \exp(I + xB) - eI - xB \| \leq C x^2 \quad (C = \exp(2 \|B\|) \text{ works})
\]

\[
\Rightarrow \lim_{x \to 0} \frac{\exp I + xB - \exp I}{x} = eB, \quad \text{so}
\]

\[
d_1 \exp(B) = eB.
\]

Note: the same argument can be used to show \(d_1 \exp \) exists.

\#4

Trivial examples:

\[\{a\} \quad \text{every map is } f(a) = a, \text{ which has a fixed pt} \]

\[\{a, b\} \quad f(a) = b, f(b) = a \text{ has no fixed pt.} \]

(with the unique metric)

Easy examples:

\(X = [0, 1] \) with usual metric

any map \(f : X \to X \) has a fixed pt, since

\((f - x)(0) \geq 0, \ (f - x)(1) \leq 0, \) and so by intermediate value theorem \(f \) \(\exists x \) \(f(x) = x, \) \(f(x) - x = 0. \)

\(X \) disconnected always has maps with no fixed pts, for if

\(X = U_1 \cup U_2 \text{ open, } f(U_1) = \{x_1\} \)

\(\text{disjoint union} \)

\(f(U_2) = \{x_1\} \text{ is continuous.} \)

Hard examples:

\(X = \overline{B}(r) \subset \mathbb{R}^n \) the closed unit ball.

\(\text{every map } X \to X \text{ has a fixed pt (Brouwer).} \)
Here is one of many possible solutions:

First, compute that

\(1 - x^2 = x \quad \iff \quad \frac{-1}{3} - \frac{1}{3} (x - 1)^2 = x - 1 \)

Let \(z = x - 1 \). Then a solution of (4) with \(x \in [0, 1] \)

\(\iff \) a fixed point of \(f(z) = \frac{-1}{3} - \frac{1}{3} z^2 \) in \(x = [z, 0] \).

But \(f : X \to X \) is continuous, and moreover

\[|f(z) - f(z')| \leq \frac{1}{3} |z - z'||(1 + |z| + |z'|) \leq \frac{2}{3} |z - z'|, \]

so \(f \) is a contraction. By the contraction mapping principle, \(f \) will have a fixed point \(x \) that fixed pt. is unique, and for any \(z \in X \), \(f^n(z) \to x \) as \(n \to \infty \).

\(n \)-composition of \(f \).

It follows that \(1 - x^2 = x \) has a unique solution \(x \) in \([0, 1]\) and

\[x = \lim_{n \to \infty} f^n(x - 1) + 1 \quad \text{for any } x \in [0, 1]. \]

\#7

\[L(x_0 \xi) = \int_0^1 \langle \dot{x} + a \xi, \dot{x} + a \xi \rangle^{1/2} dt \]

\[\frac{d}{da} L(x_0 \xi) = \int_0^1 2 \langle \dot{x} + a \xi, \dot{x} + a \xi \rangle \frac{d}{da} \langle \dot{x} + a \xi, \dot{x} + a \xi \rangle^{1/2} dt \]
\([\text{We used differentiation under } \int \text{ sign, chain rule, problem 3a, and symmetry of } \langle \cdot, \cdot \rangle \text{ of } \langle \cdot, \cdot \rangle] \]

\[\implies \frac{d}{da} \bigg|_{a=0} L(x_0 \xi) = \int_0^1 2 \langle \dot{x}, \dot{x} \rangle dt \]
(here use that \(\langle \dot{x}, \dot{x} \rangle = 1 \))

- If \(\xi \) is constant (i.e. \(\xi = 0 \)) \(\frac{d}{da} \bigg|_{a=0} L(x_0 \xi) = 0 \), which means the length of a curve is invariant under translation.
- If \(\{0\} = \{1\} = 0 \), we can integrate by parts:

\[
\mathcal{L}(\tilde{\gamma}) = \int_0^1 \mathcal{K}(\tilde{\gamma}, \dot{\tilde{\gamma}}) \, dt = \int_0^1 \frac{d}{dt} \langle \dot{\tilde{\gamma}}, \{\tilde{\gamma}\} \rangle - \langle \ddot{\tilde{\gamma}}, \{\tilde{\gamma}\} \rangle \, dt \quad \text{(equating both sides)}
\]

\[
= \langle \dot{\tilde{\gamma}}, \{\tilde{\gamma}(1)\} - \{\tilde{\gamma}(0)\} \rangle - \int_0^1 \langle \ddot{\tilde{\gamma}}, \{\tilde{\gamma}\} \rangle \, dt
\]

by assumption.

This implies that if \(\{\tilde{\gamma}\} \) is orthogonal to the acceleration \(\ddot{\tilde{\gamma}} \), \(\mathcal{L} = 0 \).

For example, if \(\{\tilde{\gamma}\} \) is parallel to \(\dot{\tilde{\gamma}} \), by ph. 4.16 \(\langle \ddot{\tilde{\gamma}}, \{\tilde{\gamma}\} \rangle = 0 \). Thus, any reparametrization of \(\tilde{\gamma} \) will have the same length.

- If \(\mathcal{L}(\tilde{\gamma}) = 0 \) for all \(\{\tilde{\gamma}\} \) with \(\{0\} = \{1\} = 0 \), we have that \(\ddot{\tilde{\gamma}} = 0 \), so \(\tilde{\gamma} \) is a line. This means, for instance, that if for \(x, y \in \mathbb{E} \) fixed we have \(\tilde{\gamma} \) s.t.

\[
\mathcal{L}(\tilde{\gamma}) = \inf \mathcal{L}(\tilde{\gamma}), \quad \text{for} \quad \{\tilde{\gamma}\} \in \mathcal{G}
\]

where \(\mathcal{G} = \{ \{\tilde{\gamma}\} \in \mathbb{E} : \tilde{\gamma}(0) = x, \tilde{\gamma}(1) = y \} \)

and \(\langle \ddot{\tilde{\gamma}}, \dot{\tilde{\gamma}} \rangle \equiv 1 \).

By a previous HW \(\Rightarrow \) \(\mathcal{L}(\tilde{\gamma}) = 0 \) for all \(\{\tilde{\gamma}\} \) with \(\{0\} = \{1\} = 0 \)

\(\Rightarrow \) \(\tilde{\gamma} \) is the line from \(x \) to \(y \).

Such \(\tilde{\gamma} \) are called minimizing geodesics. Note: in our case, this requires \(|x - y| = 1 \).

- If instead \(\mathcal{L}(\tilde{\gamma}) = 0 \) for all \(\{\tilde{\gamma}\} \) (no restrictions on endpoints), in addition to \(\ddot{\tilde{\gamma}} = 0 \) you also have from (i) that \(\dot{\tilde{\gamma}}(0) = 0 \) (choose \(\{\tilde{\gamma}\} \) with \(\dot{\tilde{\gamma}}(1) = 0, \{0\} = \{\tilde{\gamma}\} \)).

But if \(\dot{\tilde{\gamma}}(0) = 0 \) and \(\frac{d}{dt} \langle \dot{\tilde{\gamma}}, \dot{\tilde{\gamma}} \rangle \geq 2, \tilde{\gamma}(1) = 0 \) \(\forall \delta \in [0, 1], \) no \(\tilde{\gamma} \) is constant.

But this contradicts \(\tilde{\gamma} \) having unit speed.