Problem Set # 8

Multivariable Analysis (M375T)

Due: March 7

The first problem is an application of fundamental theorems proved in lecture about the differential of a function. Write a very careful proof and hand it in separately—I will read it to see how your proof-writing skills are developing. State the theorems you use before writing the proof. Map out the steps thoroughly before writing. There are many little steps and I want to see that you have thought through each one.

1. Prove the following theorem. Let \(V \) be a finite dimensional normed vector space; \(A \) an affine space over \(V \); \(W \) a normed vector space; \(B \) an affine space over \(W \); \(U \subset A \) an open set; \(f: U \to B \) a function; and \(p \in U \) a point. Assume that for every \(\xi_1, \xi_2 \in V \) the second directional derivative \(\xi_1 \xi_2 f \) exists on \(U \) and is continuous at \(p \). Then \(df \) is differentiable at \(p \), i.e., the second differential \(d^2f_p \) exists.

2. We use the same notation as in the previous problem.

 (a) Assume \(f \) is a \(C^k \) function, which means that the differential \(d(d(d(\cdots(df)))) \) exists and is continuous (\(k^{th} \) differential). Prove (using mathematical induction) that the \(k^{th} \) differential at a point \(p \) is a symmetric multilinear map

 \[
d^k f_p : V \times V \times \cdots \times V \to W
 \]

 (b) Show that if \(f \) is \(C^k \) then the iterated directional derivative \(\xi_1 \xi_2 \cdots \xi_k f \) exists and is independent of the ordering of the \(k \) vectors \(\xi_1, \xi_2, \ldots, \xi_k \in V \).

3. We continue with the same (usual) notation. Suppose in addition that \(V \) has an inner product \(\langle -, - \rangle \) (see Homework #5, problem #3). Recall that the inner product determines a norm \(\| \xi \| = \sqrt{\langle \xi, \xi \rangle} \). It is a fact that this norm is complete if and only if the inner product satisfies the following property: for each bounded linear functional \(\lambda: V \to \mathbb{R} \) there exists a unique \(\xi_\lambda \in V \) such that

 \[
 \lambda(\xi) = \langle \xi_\lambda, \xi \rangle, \quad \xi \in V.
 \]

 In that case we call \((V, \langle -, - \rangle)\) a Hilbert space. Any finite dimensional inner product space is complete (why?).
(a) Define the gradient $\nabla f_p \in V$ as the unique vector which satisfies

$$df_p(\xi) = \langle \nabla f_p, \xi \rangle, \quad \xi \in V.$$

Prove that if p is not a critical point, then ∇f_p points in the direction of maximal increase of p at p.

(b) Fix $p_0 \in A$ and set $f(p) = d(p, p_0)^2$. Compute ∇f, a vector field on A.

(c) Let $f = f(r, \theta)$ be a function on the plane (rather, an open subset of the plane on which r, θ are well-defined coordinates). Compute ∇f in terms of partial derivatives in polar coordinates. Use the standard metric on the plane.

4. Suppose $T: V \rightarrow W$ is a bounded linear map between normed linear spaces. Prove that T is differentiable and $dT = T$.

5. Let V be a finite dimensional inner product space and $B: V \times V \rightarrow \mathbb{R}$ a symmetric bilinear form. Let $S \subset V$ be the sphere of unit norm vectors. Prove that B has an eigenvector by extremizing the function

$$f: S \rightarrow \mathbb{R}$$

$$\xi \mapsto B(\xi, \xi)$$

By restricting to the orthogonal complement (define!) of the line spanned by the eigenvector you found, continue by induction to diagonalize B.

6. Express the system of differential equations

$$\frac{dx}{dt} = t + x^2 + y^3$$

$$\frac{dy}{dt} = \cos(xy)$$

as a problem to find an integral curve of a time-varying vector field $\xi(t)$. On what space is the vector field? Is $\xi(t)$ uniformly Lipschitz for each t? Is it locally uniformly Lipschitz?

7. The iteration for finding a solution $f(t)$ to an ODE with $f(t_0) = p_0$ is

$$f_n(t) = p_0 + \int_{t_0}^{t} ds F(s, f_{n-1}(s)).$$

Compute the first 3 steps of the iteration for the differential equation

$$\frac{dx}{dt} = t + x$$

beginning with the zero function. Can you guess a solution? Experiment with other starting points for the iteration.
8. Let

\[F, G : I \times \mathbb{R}^4 \rightarrow \mathbb{R} \]

be smooth functions, where \(I \subseteq \mathbb{R} \) is an open interval. Formulate the problem of solving the system

\[
\begin{align*}
 f''(t) &= F(t, f(t), g(t), f'(t), g'(t)) \\
 g''(t) &= G(t, f(t), g(t), f'(t), g'(t))
\end{align*}
\]

of ordinary differential equations for functions \(f, g : I \rightarrow \mathbb{R} \) as the problem of finding integral curves of a time-varying vector field.