M408C Fall 2017
Differential & Integral Calculus

Professor: Kathy Davis Phone: 471-0128
Office Hours: MW 12:50-1:35; Extra appointments MWF mornings
Office: RLM 9.138
Email: davis@math.utexas.edu
Web Site: http://www.ma.utexas.edu/users/davis/408C

Grading
Homework 0% Not collected, not graded
Exams 50% Two (in-TA session). See p2 for dates.
Quizzes 25% In TA Session. Alternate weeks; one dropped.
Final 25% Not cumulative; p2 for date.
Cheat Sheets Exams & Final only. One 8.5 by 11 sheet; any thing you want on it.
Make-Ups You can take one late quiz (not exam) if you tell us in advance (even same day).

Grades
89.6-100 A
88.6-89.5 A-
79.6-88.5 B
78.6-79.5 B-
69.6-78.5 C
68.6-69.5 C-
59.6-68.5 D
Below F

Text
Stewart, Calculus, Early Transcendentals, Seventh or Eighth Edition, used only for extra homework suggestions. The eighth edition is available at low cost in electronic form, for four years at UT. See the link in Canvas/

Topics
Chapters 2-6, roughly. Detailed syllabus:
http://www.ma.utexas.edu/academics/courses/syllabi/M408C.php

PreReqs
Appropriate score on placement exams.

Goals
This 408C assumes you need calculus for UT or for work. It emphasizes professionalism:
Learning technical skills;
Showing coherent work on problems;
Studying: taking and reviewing notes;
Working with other people towards a common goal.

SSD
The University of Texas provides appropriate academic accommodations for qualified students with disabilities. For more information, contact the Office of the Dean of Students at 471-6259, 471-6441 TTY. If you plan on using accomodations, you need to notify me EARLY in the semester, and reserve a room EARLY, or you'll lose your chance.
Exam Dates
E1 Thurs Oct 5
E2 Thurs Nov 2

Final Exam Date
Thursday, December 14, 2:00-2:50 pm
Be There!!

Other Important Dates
Wed Aug 30 Classes Start
Moday Sept 4 Labor Day; No Class
Nov 22-25 Thanksgiving Holiday
Dec 11 Last Class

TA Info
All your exam and quizzes are in your TA session. If you switch times, *I won't grade your exams.*
Talk to us if you must switch, even for just one day.

Class Meeting
MWF Noon RLM 4.102

TA:
Phone:

Email:

TA Session Meets Here:
53653 TTh 1-2 UTC 3.112
53654 TTh 8-9 CPE 2.218

CalcLab
We have CalcLab instead of TA office hours. To find hours and rooms, go to the CalcLab website: https://www.ma.utexas.edu/academics/undergraduate/calculus-lab/

Getting A Regrade
You can ask for a regrade to correct things that you feel we missed, or graded unfairly.
I will never lower your grade.

The Rules: Ignore the rules, I won't regrade your stuff

0) To get a regrade, you must take the exam/quiz in ink.
1) You can't get a regrade if you don't pick up your stuff
2) Compare your work with the online solutions.
3) Mark what you want me to look at, and give the exam/quiz to me in class. NOT MY OFFICE
4) Ask for the regrade within about three days after we give it back in TA session.
5) I'll bring the regraded paper to class with me, usually the next class day

Ichiban Very Important Rule: Don't throw stuff away. I give second regrades before the final.
If you've had calculus before:

a) Watch out for what's different. I do LOTS different.
b) Watch out for your algebra; it's easy to lose points.
c) You need to show work. Anyone can get answers from Google; I want to see what you learned.

Here's a general plan for studying:

a) Start with working problems. If you get stuck, check your notes to see whether I did a similar problem. If not, discuss it with your study pals. You can also take a picture of your work and email me. Before 8pm.
b) If something seems wrong on the 14U problems, email me. Don't waste hours of your own time.
c) Go to TA session to work the practice problems on the hw.

Where to find study material:

a) The problems in Stewart are too simple, so we have extra practice. For studying, you can start with Stewart but that isn't enough and your exam problems will be harder.
b) Every week I post 14U problems with solutions. Because the course moves so quickly, you need to do these problems every night, after the lecture, or at the very least, every weekend. Solutions are posted, too!
c) The homework has problems to practice you for the quizzes and exams. They don't have solutions; these are meant to be done in your TA session.
d) Finally, go through your notes to see if there's anything you've missed.

This is not a course in which you drill dozens of problems and then get you problems just like the drill. You need to do more than problems: you need to think about the kinds of problems you've seen and you need to organize that in your mind. The YAPS are designed to help.
<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Section(s)</th>
<th>Date</th>
<th>Day</th>
<th>Section(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/30/17</td>
<td>W</td>
<td>Section 2.2</td>
<td>10/25/17</td>
<td>W</td>
<td>Section 4.5</td>
</tr>
<tr>
<td>8/31/17</td>
<td>Th</td>
<td>No Quiz</td>
<td>10/26/17</td>
<td>Th</td>
<td></td>
</tr>
<tr>
<td>9/1/17</td>
<td>F</td>
<td>Section 2.2</td>
<td>10/27/17</td>
<td>F</td>
<td>Section 4.5</td>
</tr>
<tr>
<td>9/4/17</td>
<td>M</td>
<td>No Class</td>
<td>10/30/17</td>
<td>M</td>
<td>Section 4.7</td>
</tr>
<tr>
<td>9/5/17</td>
<td>T</td>
<td></td>
<td>10/31/17</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>9/6/17</td>
<td>W</td>
<td>Section 2.3</td>
<td>11/1/17</td>
<td>W</td>
<td>Section 4.7</td>
</tr>
<tr>
<td>9/7/17</td>
<td>Th</td>
<td>Quiz 1</td>
<td>11/2/17</td>
<td>Th</td>
<td></td>
</tr>
<tr>
<td>9/8/17</td>
<td>F</td>
<td>Section 2.5</td>
<td>11/3/17</td>
<td>F</td>
<td>Section 5.1, 5.2</td>
</tr>
<tr>
<td>9/11/17</td>
<td>M</td>
<td>Sections 2.7, 2.8</td>
<td>11/6/17</td>
<td>M</td>
<td>Section 5.1, 5.2</td>
</tr>
<tr>
<td>9/12/17</td>
<td>T</td>
<td></td>
<td>11/7/17</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>9/13/17</td>
<td>W</td>
<td>Section 3.1</td>
<td>11/8/17</td>
<td>W</td>
<td>Section 5.3</td>
</tr>
<tr>
<td>9/14/17</td>
<td>Th</td>
<td></td>
<td>11/9/17</td>
<td>Th</td>
<td></td>
</tr>
<tr>
<td>9/15/17</td>
<td>F</td>
<td>Section 3.2</td>
<td>11/10/17</td>
<td>F</td>
<td>Section 5.3</td>
</tr>
<tr>
<td>9/18/17</td>
<td>M</td>
<td>Section 3.2, 3.3</td>
<td>11/13/17</td>
<td>M</td>
<td>Section 5.4</td>
</tr>
<tr>
<td>9/19/17</td>
<td>T</td>
<td></td>
<td>11/14/17</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>9/20/17</td>
<td>W</td>
<td>Section 3.3</td>
<td>11/15/17</td>
<td>W</td>
<td>Section 5.4</td>
</tr>
<tr>
<td>9/21/17</td>
<td>Th</td>
<td>Quiz 2</td>
<td>11/16/17</td>
<td>Th</td>
<td>Quiz 4</td>
</tr>
<tr>
<td>9/22/17</td>
<td>F</td>
<td>Sections 3.3, 3.4</td>
<td>11/17/17</td>
<td>F</td>
<td>Section 5.5</td>
</tr>
<tr>
<td>9/25/17</td>
<td>M</td>
<td>Section 3.4</td>
<td>11/20/17</td>
<td>M</td>
<td>Section 5.5</td>
</tr>
<tr>
<td>9/26/17</td>
<td>T</td>
<td></td>
<td>11/21/17</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>9/27/17</td>
<td>W</td>
<td>Section 3.5, 3.6</td>
<td>11/22/17</td>
<td>W</td>
<td>T Giving Break</td>
</tr>
<tr>
<td>9/28/17</td>
<td>Th</td>
<td></td>
<td>11/23/17</td>
<td>Th</td>
<td>T Giving Break</td>
</tr>
<tr>
<td>9/29/17</td>
<td>F</td>
<td>Section 3.6</td>
<td>11/24/17</td>
<td>F</td>
<td>T Giving Break</td>
</tr>
<tr>
<td>10/2/17</td>
<td>M</td>
<td>Section 3.7</td>
<td>11/27/17</td>
<td>M</td>
<td>Section 5.5</td>
</tr>
<tr>
<td>10/3/17</td>
<td>T</td>
<td></td>
<td>11/28/17</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>10/4/17</td>
<td>W</td>
<td>Section 3.8</td>
<td>11/29/17</td>
<td>W</td>
<td>Section 6.1</td>
</tr>
<tr>
<td>10/5/17</td>
<td>Th</td>
<td>Exam 1</td>
<td>11/30/17</td>
<td>Th</td>
<td>Quiz 5</td>
</tr>
<tr>
<td>10/6/17</td>
<td>F</td>
<td>Section 3.8</td>
<td>12/1/17</td>
<td>F</td>
<td>Section 6.1</td>
</tr>
<tr>
<td>10/9/17</td>
<td>M</td>
<td>Section 3.9</td>
<td>12/4/17</td>
<td>M</td>
<td>Section 6.2</td>
</tr>
<tr>
<td>10/10/17</td>
<td>T</td>
<td></td>
<td>12/5/17</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>10/11/17</td>
<td>W</td>
<td>Section 3.9</td>
<td>12/6/17</td>
<td>W</td>
<td>Section 6.2</td>
</tr>
<tr>
<td>10/12/17</td>
<td>Th</td>
<td></td>
<td>12/7/17</td>
<td>Th</td>
<td></td>
</tr>
<tr>
<td>10/13/17</td>
<td>F</td>
<td>Section 3.10</td>
<td>12/8/17</td>
<td>F</td>
<td>Final Review</td>
</tr>
<tr>
<td>10/16/17</td>
<td>M</td>
<td>Section 4.1</td>
<td>12/11/17</td>
<td>M</td>
<td>Practice Final</td>
</tr>
<tr>
<td>10/17/17</td>
<td>T</td>
<td></td>
<td>12/12/17</td>
<td>T</td>
<td>Office Hours</td>
</tr>
<tr>
<td>10/18/17</td>
<td>W</td>
<td>Sections 4.1, 4.3</td>
<td>12/13/17</td>
<td>W</td>
<td>Office Hours</td>
</tr>
<tr>
<td>10/19/17</td>
<td>Th</td>
<td>Quiz 3</td>
<td>12/14/17</td>
<td>Th</td>
<td>Final Exam</td>
</tr>
<tr>
<td>10/20/17</td>
<td>F</td>
<td>Section 4.4</td>
<td>12/15/17</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>10/23/17</td>
<td>M</td>
<td>Section 4.4</td>
<td>12/18/17</td>
<td>S</td>
<td>Grades Posted</td>
</tr>
</tbody>
</table>
2 Limits and Derivatives (Six Days)
- 2.1 The Tangent and Velocity Problems
- 2.2 The Limit of a Function
- 2.3 Calculating Limits Using the Limit Laws
- 2.4 The Precise Definition of a Limit
- 2.5 Continuity
- 2.6 Limits at Infinity; Horizontal Asymptotes
- 2.7 Derivatives and Rates of Change
- 2.8 The Derivative of a Function

3 Differentiation Rules (Eleven Days)
- 3.1 Derivatives of Polynomials and Exponential Functions
- 3.2 The Product and Quotient Rules
- 3.3 Derivatives of Trigonometric Functions
- 3.4 The Chain Rule
- 3.5 Implicit Differentiation
- 3.6 Derivatives of Logarithmic Functions
- 3.7 Rates of Change in the Natural and Social Sciences (optional)
- 3.8 Exponential Growth and Decay
- 3.9 Related Rates
- 3.10 Linear Approximations and Differentials
- 3.11 Hyperbolic Functions (very quickly)

4 Applications of Differentiation (Eight Days)
- 4.1 Maximum and Minimum Values
- 4.2 The Mean Value Theorem
- 4.3 How Derivatives Affect the Shape of a Graph
- 4.4 Indeterminate Forms and L'Hospital's Rule
- 4.5 Summary of Curve Sketching
- 4.7 Optimization Problems
- 4.9 Antiderivatives

5 Integrals (Five Days)
- 5.1 Areas and Distances
- 5.2 The Definite Integral
- 5.3 The Fundamental Theorem of Calculus
- 5.4 Indefinite Integrals and the Net Change Theorem
- 5.5 The Substitution Rule

6 Applications of Integration (Four Days)
- 6.1 Areas between Curves
- 6.2 Volume
- 6.3 Volumes by Cylindrical shells (optional)
- 6.4 Work (optional)
- 6.5 Average value of function (optional)