Q4 Practice

1) Let \(z = 1 - x^2 - y^2; \) \(P = P\left(0, \frac{1}{2}\right) \)
 a)(10 points) Sketch the surface; locate \(P, f(P) \) on the graph
 Your sketch should take up a quarter to a third of your page.
 b)(5 points) Write this as an implicit surface, \(F(x, y, z) = 0 \)
 c)(10 points) Find an implicit tangent plane at \(P \); you’ll need \(\vec{\mathbf{n}}, \vec{r}_0 \)
 d)(10 points) Find a parametric representation \(\vec{r}(t) = (x(t), y(t), z(t)) \)
 for the trace \(z = f(0, y) \). Also find a \(t_0 \) such that at \(t_0 \), the parametric
 curve goes through \(P, f(P) \).
 e)(5 points) Find \(\vec{r}'(t) \) and \(\vec{r}'(t_0) \).
 f)(5 points) Show that the tangent vector \(\vec{r}'(t_0) \) lies in the tangent plane
 in c).

Q5 Practice

Let \(z = f(x, y) = (y - \sin x)^2; \) \(P = P(0, 1) \)
 a)(5 points) Find the level curve \(z = f(P) \), that passes through \(P \).
 Sketch it in the \(xy \) plane and locate \(P \) on the curve.
 b)(5 points) Find \(\nabla f; \nabla f(P) \).
 c)(5 points) Sketch \(\nabla f(P) \) on the graph in a), with its tail at \(P \).
 d)(5 points) Find a parametric representation \(\vec{r}(t) \), that lies on the
 curve in a), and goes through the point \(P \). Find a \(t_0 \) with \(\vec{r}(t_0) = P \).
 e)(5 points) Compute \(\vec{r}'(t_0) \) and compute that \(\nabla f(P) \) is perpendicular
 to \(\vec{r}'(t_0) \).