HOMEWORK 5: DUE APRIL 15

In our discussion in class of the idea of Public Key Encryption we have seen that the well-known RSA method is based on group theory associated with modular arithmetic. The current homework assignment pursues this both further and in detail.

First Basic Result. Let n be a positive integer, not necessarily prime, and set

$$G = \{ r : 1 \leq r < n, \gcd(r, n) = 1 \}.$$

Then G is a group under multiplication mod n.

Problem 1. To illustrate what G can look like, write down all elements x in G when $n = 21$ and then determine the inverse x^{-1} for each of these elements x.

To prove the First Basic Result we have to show:

1. G is closed under multiplication mod n;
2. G contains an identity element e;
3. for each x in G there exists an inverse y in G, i.e., $xy \equiv 1 \pmod{n}$.

Property (2) is clear since $e = 1$ is an identity for \mathbb{Z}, hence for multiplication mod n. Let’s try proving (1), which is the result we looked at with some difficulty in class. A restatement of (1) is contained in the next problem.

Problem 2. Suppose r, v and integers such that

$$1 \leq r, v < n, \quad \gcd(r, n) = 1 = \gcd(v, n),$$

and define k by $rv \equiv k \pmod{n}$. Then $\gcd(k, n) = 1$.

To answer problem 2, complete the following steps:

1. write $rv = k + mn$ for some integer m;
2. let a be an integer dividing both k and n. Show that we can assume a is prime;
3. show that a divides both rv and n;
4. show that a divides either r or v (or both);
5. deduce that $a = 1$, and hence that $\gcd(k, n) = 1$.

Establishing the existence of an inverse for each element in G amounts to solving the next problem.

Typeset by AMS-\TeX
Problem 3. Let \(r \) be an integer such that \(1 \leq r < n \) and \(\gcd (r, n) = 1 \). Then there exists an integer \(s \) such that

\[
1 \leq s < n, \quad rs \equiv 1 \pmod{n}.
\]

To handle Problem 3 we can use Propositions 1.6.2 and 1.6.9 in the text. Fix integers \(r, n \) but let’s not assume for the moment that \(\gcd (r, n) = 1 \). Now define \(I(r, n) \) by

\[
I(r, n) = \{ ar + bn : \ a, b \in \mathbb{Z} \}.
\]

Show that \(I(r, n) \) has the following properties:

1. if an integer \(c \) is a divisor of both \(r \) and \(n \), then \(c \) divides every element of \(I(r, n) \);
2. if \(d = \gcd(r, n) \), then \(d \) belongs to \(I(r, n) \);

Deduce from these properties of \(I(r, n) \) that if \(\gcd (r, n) = 1 \), then there is an integer \(t \) such that \(rt \equiv 1 \pmod{n} \).

Problem 4. Show that if there exists an integer \(t \) such that \(rt \equiv 1 \pmod{n} \), then there exists an integer \(s \) such that

\[
1 \leq s < n, \quad rs \equiv 1 \pmod{n}.
\]

This completes the proof of The First Basic Result. As a further illustration of this result, answer

Problem 5. Write down all elements \(x \) in \(G \) when \(n = 12 \) and then determine the inverse \(x^{-1} \) for each of these elements \(x \).

Second Basic Result. Let \(n \) be an integer, not necessarily prime, and define the so-called Euler \(\phi \)-function by

\[
\phi(n) = \# \{ r : 1 \leq r < n, \ \gcd(r, n) = 1 \}.
\]

Then each integer \(a \) for which \(\gcd(a, n) = 1 \) has the property

\[
a^{\phi(n)} \equiv 1 \pmod{n}.
\]
Problem 6. Use Lagrange’s Theorem and the First Basic Result to give a proof of the Second Basic Result.

Already we have assembled all the results need to describe the RSA Public Key Encryption system: choose a pair of positive, prime integers p, q which in practice will be very large. Now set $n = pq$. At the current state of ‘unclassified’ knowledge, it is very hard to determine the prime factors p, q if one knows only the value of n. Next set $m = (p - 1)(q - 1)$.

Problem 7. Show that $\phi(n) = m = (p - 1)(q - 1)$. (This is the significance of making the particular choice of m.)

Next fix an integer e such that

$$1 \leq e < m, \quad \text{gcd}(e, m) = 1.$$

Problem 8. Use the First Basic Result to show that there exists an integer s such that

$$1 \leq s < m, \quad es \equiv 1 \pmod{m}.$$

Again at the current state of ‘unclassified’ knowledge, it is very hard to determine s if one knows only n and e. So one can feel reasonably secure telling everyone the values of n and e. The RSA system proceeds as follows: suppose a is an integer such that

$$1 \leq a < n, \quad \text{gcd}(a, n) = 1;$$

when n is large, there will be very few choices a for which $\text{gcd}(a, n) > 1$ (can you see why?). Set $b = a^e \pmod{n}$.

Problem 9. Use the First and Second Basic Results to show that $a = b^s \pmod{n}$. In other words, we can recover the value a from b provided we know s.

Problem 10. Use your answers to problems 1 and 5 to illustrate the RSA Public Key Encryption system when $p = 7$ and $q = 3$.