Chapter 21
The Black-Scholes Equation

Question 21.1.
If \(V(S,t) = e^{-r(T-t)} \) then the partial derivatives are \(V_S = V_{SS} = 0 \) and \(V_t = rV \). Hence \(V_t + (r - \delta) SV_S + S^2 \sigma^2 V_{SS}/2 = rV \).

Question 21.2.
If \(V(S,t) = AS^{a}e^{\gamma t} \) then \(V_t = \gamma V \), \(V_S = aS^{a-1}e^{\gamma t} = aV/S \), and \(V_{SS} = a(a-1)S^{a-2}e^{\gamma t} = a(a-1)V/S^2 \). Therefore the left hand side of the Black-Scholes equation (21.11) is

\[
V_t + (r - \delta) V_S + V_{SS} S^2 \sigma^2 / 2 - rV = \left(\gamma - r + (r - \delta) a + \frac{\sigma^2}{2} a(a-1) \right) V. \tag{1}
\]

We can rewrite the coefficient of \(V \) as

\[
\gamma + (r - \delta) a + \frac{\sigma^2}{2} a(a-1) = \frac{\sigma^2}{2} a^2 + \left(r - \delta - \frac{\sigma^2}{2} \right) a + \gamma - r. \tag{2}
\]

From the quadratic formula, this has roots

\[
a = \frac{-\left(r - \delta - \frac{\sigma^2}{2} \right)}{\sigma^2} \pm \sqrt{\frac{(r - \delta - \frac{\sigma^2}{2})^2 - 4\frac{\sigma^2 a^2}{2} (\gamma - r)}}. \tag{3}
\]

Simplifying,

\[
a = \left(\frac{1}{2} - \frac{r - \delta}{\sigma^2} \right) \pm \sqrt{\left(\frac{r - \delta}{\sigma^2} - \frac{1}{2} \right)^2 + \frac{2(r - \gamma)}{\sigma^2}}. \tag{4}
\]

Note, for a given \(\gamma \), these are the only values for \(a \) that will satisfy the PDE.

Question 21.3.
If \(V(S,t) = e^{-r(T-t)}S^a \exp \left((a(r - \delta) + \frac{1}{2}a(a-1)\sigma^2)(T-t) \right) \), we have \(V(S,T) = S_T^a \), hence the boundary condition is satisfied. Note that \(V \) is of the form \(AS^a e^{\gamma t} \), where \(\gamma = r - a(r - \delta) - \frac{1}{2}a(a-1)\sigma^2 \). The previous problem’s result shows \(\gamma \) must solve

\[
a = \left(\frac{1}{2} - \frac{r - \delta}{\sigma^2} \right) \pm \sqrt{\left(\frac{r - \delta}{\sigma^2} - \frac{1}{2} \right)^2 + \frac{2(r - \gamma)}{\sigma^2}}. \tag{5}
\]
Letting \(k = \left(\frac{1}{2} - \frac{r - \delta}{\sigma^2} \right) \), we have to check
\[
a = \pm \sqrt{k^2 + \frac{2(r - \gamma)}{\sigma^2}}. \tag{6}
\]
This is equivalent to checking
\[
k^2 + \frac{2(r - \gamma)}{\sigma^2} \equiv (a - k)^2. \tag{7}
\]
Expanding, this becomes
\[
2\frac{(r - \gamma)}{\sigma^2} \equiv a^2 - 2a \left(\frac{1}{2} - \frac{r - \delta}{\sigma^2} \right). \tag{8}
\]
Solving for \(\gamma \),
\[
\gamma = r - \frac{\sigma^2 a^2}{2} + a \left(\frac{\sigma^2}{2} - (r - \delta) \right) = r - a(r - \delta) - \frac{\sigma^2}{2}a(a - 1) \tag{9}
\]
which is confirmed. One could also do this as a partial derivative exercise.

Question 21.4.

Defining \(V(S, t) = K e^{-r(T-t)} + S e^{-\delta(T-t)} \) we have \(V_t = r K e^{-r(T-t)} + \delta S e^{-\delta(T-t)} \), \(V_S = e^{-\delta(T-t)} \) and \(V_{SS} = 0 \). The Black-Scholes equation is satisfied for \(V_t + (r - \delta)V_S S + V_{SS} S^2 \sigma^2 / 2 \) is
\[
r Ke^{-r(T-t)} + \delta S e^{-\delta(T-t)} + (r - \delta) e^{-\delta(T-t)} S \tag{10}
\]
\[
= r \left(Ke^{-r(T-t)} + Se^{-\delta(T-t)} \right) = r V. \tag{11}
\]
This also follows from the result that linear combinations of solutions of the PDE are also solutions. The boundary condition is \(V(S, T) = K + S_T \), i.e. we receive one share and \(K \) dollars. Similarly, a long forward contract with value \(Se^{-\delta(T-t)} - Ke^{-r(T-t)} \) will solve the PDE.

Question 21.5.

Let \(V = Se^{-\delta(T-t)} N(d_1) \). Note that \(d_1 \) depends on both \(S \) and \(t \). We have
\[
V_S = e^{-\delta(T-t)} \left(N(d_1) + S \frac{\partial N(d_1)}{\partial S} \right) = e^{-\delta(T-t)} \left(N(d_1) + \frac{N'(d_1)}{\sigma \sqrt{T-t}} \right) \tag{12}
\]
Part 5 Advanced Pricing Theory

hence

\[(r - \delta)S V_S = (r - \delta) V + \frac{(r - \delta)}{\sigma \sqrt{T - t}} e^{-\delta(T - t)} SN'(d_1). \] \tag{13}

Similarly,

\[V_{SS} = e^{-\delta(T - t)} \left(\frac{N'(d_1)}{S \sigma \sqrt{T - t}} + \frac{N''(d_1)}{S \sigma^2 (T - t)} \right) = \frac{e^{-\delta(T - t)} N'(d_1)}{S \sigma \sqrt{T - t}} \left(1 - \frac{d_1}{\sigma \sqrt{T - t}} \right) \] \tag{14}

where we used the fact \(N''(x) = -x N'(x) \). We have

\[\frac{S^2 \sigma^2 V_{SS}}{2} = \frac{\sigma S e^{-\delta(T - t)} N'(d_1)}{2 \sqrt{T - t}} \left(1 - \frac{d_1}{\sigma \sqrt{T - t}} \right). \] \tag{15}

The partial with respect to \(t \) is

\[V_t = \delta V + S e^{-\delta(T - t)} N'(d_1) \left(\frac{\ln(S/K)}{2 \sigma (T - t)^{3/2}} - \frac{r - \delta + \sigma^2/2}{2 \sigma (T - t)^{1/2}} \right) \]
\[= \delta V + \frac{S e^{-\delta(T - t)} N'(d_1)}{2 (T - t)} \left(d_1 - 2 \frac{(r - \delta + \sigma^2/2)}{\sigma} \sqrt{T - t} \right). \] \tag{16}

Adding equations (13), (15), and (16), all terms cancel except the \(r V \) term from equation (13), hence \(V_t + (r - \delta) S V_S + S^2 \sigma^2 V_{SS}/2 = r V \) which was to be shown.

Question 21.6.

Let \(V(S, t) = e^{-r(T - t)} N(d_2) \); we must show \(V \) solves the PDE \(V_t + (r - \delta) S V_S + S^2 \sigma^2 V_{SS}/2 = r V \). Note that

\[d_2 = \frac{\ln(S/K)}{\sigma \sqrt{T - t}} + \left(\frac{r - \delta - \sigma^2/2}{\sigma} \right) \sqrt{T - t} \] \tag{17}

depends on both \(S \) and \(t \). Beginning with the first term in the PDE,

\[V_t = r V + e^{-r(T - t)} N'(d_2) \left(\frac{\ln(S/K)}{2 \sigma (T - t)^{3/2}} - \frac{r - \delta - \sigma^2/2}{2 \sigma (T - t)^{1/2}} \right) \]
\[= r V + \frac{e^{-r(T - t)} N'(d_2)}{2 (T - t)} \left(d_2 - 2 \frac{(r - \delta - \sigma^2/2)}{\sigma} \sqrt{T - t} \right). \] \tag{18}

266
Since \(V_S = e^{-r(T-t)}N'(d_2) / (S\sigma \sqrt{T-t}) \) the second term in the PDE is

\[
(r - \delta) S V_S = \left(\frac{r - \delta}{\sigma \sqrt{T-t}} \right) e^{-r(T-t)} N'(d_2). \tag{19}
\]

The second partial of \(V \) with respect to \(S \) is

\[
V_{SS} = \frac{e^{-r(T-t)}(N''(d_2) - N'(d_2))}{S^2\sigma^2(T-t)} = \frac{e^{-r(T-t)} N'(d_2)}{S^2\sigma^2(T-t)} \left(d_2 + \sigma \sqrt{T-t} \right) \tag{20}
\]

where we use the property \(N''(x) = -x N'(x) \). The third term in the PDE is therefore

\[
\frac{S^2\sigma^2 V_{SS}}{2} = -\frac{e^{-r(T-t)} N'(d_2)}{2(T-t)} \left(d_2 + \sigma \sqrt{T-t} \right). \tag{21}
\]

Adding equations (18), (19), and (21), all terms cancel except the \(r V \) term in equation (18); i.e. \(V \) satisfies the PDE.

Question 21.7.

The two preceding problems, show that each term in the Black-Scholes call option formula satisfies the PDE (these are all or nothing options); since linear combination of solutions to PDEs are also solutions, the Black-Scholes formula solves the PDE. That is

\[
V(S, t) = Se^{-\delta(T-t)}N(d_1) - Ke^{-r(T-t)}N(d_2) \tag{22}
\]

The only thing left is to show the boundary condition, \(V(S, T) = \max(S - K, 0) \). The first term is \(SN(d_1) \). As in the text’s discussion of the European call option, at \(t = T \),

\[
N(d_1) = N(d_2) = \begin{cases}
1 & \text{if } S > K \\
0 & \text{if } S < K
\end{cases}
\]

hence \(V(S, T) = S - K \) if \(S \geq K \) and \(V(S, T) = 0 \) otherwise.

Question 21.8.

These bets are all or nothing options. The cash bets being worth, per dollar, \(e^{-rT}N(d_2) \) if we receive $1 if \(S_T > K \) and \(e^{-rT}N(-d_2) \) if we receive $1 if \(S_T < K \). The stock bets being worth, per share, \(SN(d_1) \) if we receive 1 share if \(S_T > K \) and \(SN(-d_1) \) if we receive 1 share if \(S_T < K \). (Note we are assuming the current time is \(t = 0 \) and the bet is for the stock price \(T \) years from now).
a) By setting $K = Se^{(r-\delta)T}$, $d_2 = -\sigma \sqrt{T}/2$ the value of the bet that the share price will exceed the forward price is $e^{-rT}N(-\sigma \sqrt{T}/2)$. This is always less than the opposite bet, which has value $e^{-rT}N(\sigma \sqrt{T}/2)$.

b) If denominated in cash, we could make the bet fair by setting the strike price equal to $K = Se^{(r-\delta-S\sigma^2)T}$, which is the median (50% of the probability is above this value). This will make $d_2 = 0$ and the bets worth $e^{-rT}/2$ which is not a surprise since the sum of the two bets must be worth e^{-rT}. Using $T = 1$, $r = 6\%$, $\sigma = 30\%$, we have $K = 100e^{0.06-3^2/2} = 101.51$.

c) If denominated in shares, we could make the bet fair by setting the strike price equal to $K = Se^{(r-\delta+S\sigma^2)T} = 100e^{0.06+3^2/2} = 111.07$, which is above the forward price. This makes $d_1 = 0$ and the bets worth $S/2 = 50$.

Question 21.9.

Let $S = 100$ and $K = 106.184$ which is the forward price. The first bet is worth $V_1 = SN(\sigma \sqrt{T}/2) - e^{-rT}KN(-\sigma \sqrt{T}/2)$ and the second bet is worth $V_2 = KN(\sigma \sqrt{T}/2) - SN(-\sigma \sqrt{T}/2)$. The difference in the values

$$V_1 - V_2 = (S - Ke^{-rT}) \left(N \left(\frac{\sigma \sqrt{T}}{2} \right) + N \left(-\frac{\sigma \sqrt{T}}{2} \right) \right) = S - Ke^{-rT}. \quad (24)$$

Since K is the forward price, $K = Se^{rT}$ which implies $V_1 = V_2$. This is simply put call parity; if the strike price is the forward price, $C - P$ must equal the value of an obligation to buy the asset for the forward price which, by definition is zero. Using the parameters, $\sigma = 30\%$, $r = 6\%$, and $T = 1$, both bets should be worth 11.92.

Question 21.10.

If we purchase one unit of the claim, $-V_S$ shares, and invest W in the risk free bond, our investment is worth $I = V(S, t) - V_SS + W = 0$. By purchasing one claim, we will receive a dividend of Γdt that will be added to dI. The change in the investment value is

$$dI = \Gamma dt + V_idt + V_SdS + \frac{\sigma^2S^2V_SdS}{2} - V_SdS - V_S\delta Sdt + rWdt \quad (25)$$

$$= \left(\Gamma + V_i + \frac{1}{2}\sigma^2S^2V_SS - V_S\delta S + rW \right) dt. \quad (26)$$

Since this is risk free and is (initially) a zero investment, both the drift and I must be zero. This implies $W = V_SS - V$ and

$$\Gamma + V_i + \frac{1}{2}\sigma^2S^2V_SS - V_S\delta S + r(V_SS - V) = 0, \quad (27)$$
hence

\[\Gamma + V_t + \frac{1}{2} \sigma^2 S^2 V_S S + (r - \delta) V_S S = r V. \]

(28)

Note that if we assume \(\Gamma \) is a continuous yield of the claim (rather than a $ per unit rate), the first term would be \(\Gamma V \) rather than \(\Gamma \).

Question 21.11.

Using the notation from Proposition 21.1, \(\eta = .02 + 2 (.2) .3 (.5) = .08, \delta^* = .06 - 2 (.06 - .01) - .5^2 = -.29 \). The function \(V \) is the prepaid forward price of \(S \), \(S_0 e^{-\eta T} \). The value of the claim is

\[90^2 e^{(.06+.29)2}50e^{-08(2)} = 694, 983. \]

(29)

Using proposition 20.4, the value should be

\[S_0 e^{-\delta T} \left(Q_0 e^{b(r-\delta Q) + .5b(b-1)\sigma^2 \sigma^2} \right) e^{bp_0 \sigma \sigma T} \]

(30)

which equals

\[50e^{-04} \left(90^2 e^{(1+.5^2)2} \right) e^{-12} = 694, 983. \]

(31)

Question 21.12.

Setting \(b = -1 \) and using Proposition 21.1, we change the dividend yield of \(S \) to \(\eta = .02 - .2 (.3) (.5) = -.01 \). The prepaid forward price, i.e. \(V \) in equation (21.35), is \(S_0 e^{-\eta T} \). Letting \(\delta^* = .06 + (.06 - .01) - .5^2 = -.14 \), we have the value of the claim being

\[\frac{1}{90} e^{-2(2)} \left(50e^{.01(2)} \right) = 0.8455. \]

(32)

Using Proposition 20.4, the claim should be worth

\[S_0 e^{-\delta T} \left(Q_0 e^{b(r-\delta Q) + .5b(b-1)\sigma^2 \sigma^2} \right) e^{bp_0 \sigma \sigma T} \]

(33)

which equals

\[50 e^{-04} \left(90^{-1} e^{-05+.5^2} \right) e^{03(2)} = 0.8455. \]

(34)

Note that Proposition 20.4 derives the forward price; upon discounting, the forward price of \(S \) becomes \(S_0 e^{-\delta T} \) and the forward price of \(Q^b \) terms does not get discounted.

Let \(P(Q, S, 0) \) be the current \((t = 0)\) no arbitrage value of the claim that pays \([Q_T - F_{0,T}] \times \max(0, S_T - K) \). Since \(F_{0,T}(Q) = Qe^{(r - \delta Q)T} \) (a “known” number)

\[
P(Q, S, 0) = Qe^{(r - \delta Q)T} V(S, K, \sigma_S, r, T, \delta - \rho \sigma \sigma_S) - Qe^{(r - \delta Q)T} V(S, K, \sigma_S, r, T, \delta).
\] (35)

where \(V(\cdot) \) is the Black-Scholes call option formula; note that there is a different dividend yield in the two equations. We immediately see that, since \(\rho < 0 \), the first option will be worth less than the second and we shouldn’t accept this offer. Intuitively, since \(\ln(S) \) and \(\ln(Q) \) are negatively correlated, when \(Q_T > F_{0,T}(Q) \), the call option is more likely to be out of the money. Using \(K = 50 \), the claim will be worth

\[
90e^{(0.06 - 0.01)^2} (7.98 - 10.39) = -239.71.
\] (36)

Using Proposition 21.1, since \(b = 1 \), the insurance payoff should be worth

\[
Qe^{(r - \delta Q)T} V(S, K, \sigma_S, r, T, \delta - \rho \sigma \sigma_S)
\] (37)

hence we should use a dividend yield of \(.02 + .2(.3)(.5) = .05 \) making the put relatively more valuable. For \(K = 50, V = 7.09 \) hence the insurance is worth \(90e^{(0.06 - 0.01)^2} (7.09) = 705.21 \). If we wanted to insure \(90e^{(0.06 - 0.01)^2} = 99.465 \) units, it would cost \(90e^{(0.06 - 0.01)^2} (6.05) = 601.77 \). This is intuitive since \(\ln(S) \) and \(\ln(Q) \) are negatively correlated. When \(Q \) is high, \(S \) is more likely to be low making the insurance payout larger (the holder has the right to sell \textit{more} units for \(K \)).