4.1. Digital options.

Problem 4.1. (2 points) What do we call an option in which the holder has a claim that pays one share of stock if \(S(T) \geq K \), and nothing otherwise?

(a) A cash-or-nothing call
(b) An asset-or-nothing call
(c) A forward contract
(d) An asset-or-nothing put
(e) None of the above.

4.2. Arbitrage.

Problem 4.2. (5 points) Provide the definition of an arbitrage portfolio.

Problem 4.3. Samantha plans to travel to Japan and acquires 100,000 Japanese yen. The exchange rate at time of purchase is 0.0055873 GBP per yen.

(i) (2 points) How many GBP does Samantha have to spend?

(ii) (2 points) Samantha keeps the 100,000 yen safe in a drawer. In two weeks, Samantha decides against going to Japan after all and proceeds to exchange her 100,000 yen back to GBP. At that time, the exchange rate is 0.0062 GBP per yen. How many GBP does Samantha receive?

(iii) (2 points) Based on your responses above, do you think that Samantha inadvertently discovered an arbitrage opportunity?

4.3. European puts. Provide your complete solution to the following problem:

Problem 4.4. (3 points) Source: Sample FM(DM) Problem #62.

The stock price today equals $100 and its price in one year is modeled by the following distribution:

\[
S(1) \sim \begin{cases}
125 & \text{with probability } 1/2 \\
60 & \text{with probability } 1/2
\end{cases}
\]

The annual effective interest rate equals 3%.

Consider an at-the-money, one-year European put option on the above stock whose initial premium is equal to $7.

What is the expected profit of this put option?
Floors. The portfolio consisting of
- the long risky asset, and
- a long put on that asset

is commonly referred to as the floor. It arises naturally when the producer of a commodity or an owner of a risky asset (shares of stock, e.g.) uses puts to hedge his/her exposure to risk.

Provide your final answer only for the following problem.

Problem 4.5. (5 points) Sample FM(DM) #13.
Suppose that you short one share of a stock index for 50, and that you also buy a 60–strike European call option that expires in 2 years for 10. Assume the effective annual interest rate is 3%. If the stock index increases to 75 after 2 years, what is the profit on your combined position, and what is an alternative name for the call in this context?

<table>
<thead>
<tr>
<th>Profit</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. −22.64</td>
<td>Floor</td>
</tr>
<tr>
<td>B. −17.56</td>
<td>Floor</td>
</tr>
<tr>
<td>C. −22.64</td>
<td>Cap</td>
</tr>
<tr>
<td>D. −17.56</td>
<td>Cap</td>
</tr>
<tr>
<td>E. −22.64</td>
<td>“Written” Covered Call</td>
</tr>
</tbody>
</table>

Provide your complete solution to the following problem.

Problem 4.6. Aunt Dahlia simultaneously purchased
- one share of a market index at the current spot price of $1,000;
- one one-year, $1,050-strike put option on the above market index for the premium of $20.

(i) (5 points) Is the above portfolio’s payoff bounded from above? If you believe it is not, substantiate your claim. If you believe that it is, provided the upper bound.
(ii) (5 points) Is the above portfolio’s payoff bounded from below? If you believe it is not, substantiate your claim. If you believe that it is, provided the lower bound.

Covered puts. The writer of a put option might want to hedge his/her exposure to risk by shorting the underlying asset. The position consisting of
- the short risky asset, and
- a written put on that asset

is commonly referred to as the covered put.

Provide your final answer only for the following problem.

Problem 4.7. (2 points) Source: Dr. Jim Daniel (personal communication).
Which of the following constitutes a one-year, $100-strike covered put?

(a) Write a one-year, $100-strike call and buy the underlying.
(b) Write a one-year, $100-strike put and short the underlying.
(c) Write a one-year, $100-strike put and buy the underlying.
(d) Write a one-year, $100-strike put and write a one-year, $100-strike call.
(e) None of the above.

4.4. Parallels between put options and classical insurance. Consider homeowner’s insurance. An insurance policy is there to compensate the homeowner in case there is a financial loss due to physical damage to the home (fire, e.g.). At the time the insurance policy is issued the home is appraised and its initial value becomes part of the insurance policy. If the property is damaged, the insurance company is liable to make a benefit payment to the policyholder in the amount needed to bring the home back to its original state. In order for this to happen, however, the policyholder needs to initiate a claim. The homeowner is not required to file a claim, but should the claim be filed, the insurance company is required to proceed according to the contract and make the benefit payment.
So far, we have discussed the use of derivative securities (forward contracts, call options and put options) for hedging. If we draw parallels between classical insurance and use of options, we get the following correspondence:

<table>
<thead>
<tr>
<th>Classical homeowner’s insurance</th>
<th>Hedging with derivative securities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>Risky asset</td>
</tr>
<tr>
<td>Value of home</td>
<td>Market price of the risky asset</td>
</tr>
<tr>
<td>Insurance company</td>
<td>Option writer</td>
</tr>
<tr>
<td>Policyholder</td>
<td>Option buyer</td>
</tr>
<tr>
<td>Benefit payment</td>
<td>Payoff</td>
</tr>
</tbody>
</table>

If we specify the features of the insurance policy, we can see even more precise connections. Most insurance policies include a type of cost-sharing between the insurer and the insured. Most commonly, homeowner’s insurance includes a *deductible*. The deductible d is the monetary amount up to which the policyholder pays for the damages. Once the loss exceeds d, the insurer pays for the excess of the loss over the deductible. So, if we denote the loss amount by the random variable X, the amount paid by the insurer and received by the policyholder is $(X - d)_+$. The loss X can be understood as the reduction in the home’s value due to physical damage. If we denote the home’s value at time t by $S(t)$, we see that $X = S(0) - S(T)$ with T denoting the end of the insurance period, say. Having observed this, we see that the amount received by the policyholder is

$$(X - d)_+ = (S(0) - S(T) - d)_+ = ((S(0) - d) - S(T))_+$$

The expression above is exactly the payoff of a put option with strike price $S(0) - d$. With this observation, our analogy is complete.

Please, provide the **final solution only** to the following problem(s):

Problem 4.8. (2 points) *Source: Sample FM(DM) Problem #27.*
The position consisting of *one long homeowners insurance contract* benefits from falling prices in the underlying asset.

TRUE FALSE

Problem 4.9. (2 points) The owner of a house worth $180,000 purchases an insurance policy at the beginning of the year for a price of $1,000. The deductible on the policy is $5,000. If after 6 months the homeowner experiences a casualty loss valued at $50,000, what is the homeowner’s net loss? Assume that the continuously compounded interest rate equals 4.0%.

(a) $6,020
(b) $11,020
(c) $50,000
(d) $51,020
(e) None of the above.

Problem 4.10. (8 points) Draw the profit diagram for the homeowner’s **complete** position consisting of both the property and the insurance policy.
4.5. **Forward prices.**

Annualized forward premium. As usual, let $F_{0,T}(S)$ denote the forward price for the delivery of asset S at time T. Then, the *forward premium* is defined as

$$\frac{F_{0,T}(S)}{S(0)}.$$

The *annualized forward premium (rate)* is defined as

$$\frac{1}{T} \ln \left(\frac{F_{0,T}(S)}{S(0)} \right).$$

Provide a complete solution to the following problem:

Problem 4.11. (5 points)

The current price of a stock is $S(0) = $100 per share. Let the stock pay continuous dividends with the dividend yield $\delta = 0.02$. The forward price for delivery of the above stock in two years is 103.05. Calculate the annualized forward premium (rate).