Put-call parity: The general case

6.1. Construction. So far, we have looked at put-call parity for non-dividend-paying assets. Now, we will use a similar approach to obtain put-call parity for stocks that pay either discrete dividends, or a continuous dividend stream.

Let Portfolio A consist of a long European call and a short European put on the same underlying asset \(S \) with the same strike \(K \) and the same exercise date \(T \). The initial value of this portfolio is

\[
V_A(0) = V_C(0) - V_P(0).
\]

There are no intermediate cash-flows associated with this portfolio and its payoff at time \(T \) is

\[
V_C(T) - V_P(T) = S(T) - K.
\]

On the other hand, let Portfolio B consist of the following:

1. a long prepaid forward contract on \(S \) for delivery at time \(T \),
2. borrowing the present value of the strike price to be repaid at time \(T \).

Then, the initial cost of this portfolio equals:

\[
F^P_{0,T}(S) - PV_{0,T}(K).
\]

Since there are no intermediate cash-flows associated with this portfolio, either, its payoff at time \(T \) is

\[
S(T) - K.
\]

Since the above portfolios have the same final payoff, by the no-arbitrage principle, we conclude that their initial values must also be the same. We get the more general version of put-call parity:

\[
V_C(0) - V_P(0) = F^P_{0,T}(S) - PV_{0,T}(K).
\]

6.2. Special cases. Our most common setting is the one with a continuously compounded interest rate \(r \). In that case the put-call parity reads as

\[
V_C(0) - V_P(0) = F^P_{0,T}(S) - Ke^{-rT}.
\]

With respect to dividends, these are the three cases we will be looking into:

- non-dividend-paying stocks:
 \[
 V_C(0) - V_P(0) = S(0) - Ke^{-rT}
 \]
- discrete dividends \(D_i, i = 1, \ldots, n \) at times \(0 < t_1 < \cdots < t_n \leq T \):
 \[
 V_C(0) - V_P(0) = S(0) - \sum_{i=1}^{n} D_i e^{-r t_i} - Ke^{-rT}
 \]
• continuous dividends at the rate δ:

$$V_C(0) - V_P(0) = S(0)e^{-\delta T} - Ke^{-rT}$$

6.3. MFE Exam Spring 2007: Problem #1. On April 30, 2007, a common stock is priced at $52.00. You are given that:

1. Dividends in equal amounts are to be paid on June 30, 2007, and on September 30, 2007.
2. A European call on the above stock with strike $K = 50$ and the exercise date in six months sells for 4.50.
3. A European put on the above stock with strike $K = 50$ and the exercise date in six months sells for 2.45.
4. The continuously-compounded risk-free interest rate equals 0.06.

Calculate the amount of each dividend.

Solution. In addition to our usual notation, we introduce D to stand for the amount of each dividend payment. Then, the put-call parity reads as

$$V_C(0) - V_P(0) = S(0) - De^{-rt_1} - De^{-rt_2} - Ke^{-rT}$$

with $t_1 = 1/6$ and $t_2 = 5/12$. Solving for D above, we get

$$D = \frac{S(0) - Ke^{-rT} - V_C(0) + V_P(0)}{e^{-rt_1} + e^{-rt_2}} = \frac{52 - 50e^{-0.06(1/2)} - 4.5 + 2.45}{e^{-0.06(1/6)} + e^{-0.06(5/12)}} \approx 0.73.$$