16 people are arranged in a circle and numbered consecutively from 1-16. Starting from #1, every 2nd person is eliminated.

- Elimination round #1: 2, 4, 6, 8, 10, 12, 14, 16
 All even numbers (16/2 = 8 numbers)

- Elimination round #2: 3, 7, 11, 15

- Elimination round #3: 5, 13

- Elimination last round: 9. \(\Rightarrow \) #1 is the only remaining person.

2) Mathematical induction:
Prove that for any \(n \in \mathbb{Z}^+ \), given \(2^n \) people arranged in a circle and numbered from 1-\(2^n \) consecutively, if every 2nd person starting from #1 is eliminated, only #1 remains.

Basis step: \(n = 1 \Rightarrow 2 \) persons are in the circle \(\Rightarrow \) obviously only #1 remains after elimination.

I.H.: Given \(2^n \) people, only #1 remains.

To show: Given \(2^{n+1} \) people, only #1 remains.

Take \(2^{n+1} \) people arranged in the circle. After round 1, it is clear that all the "even" people are eliminated \(\Rightarrow \frac{2^{n+1}}{2} = 2^n \) even people are gone and \(2^n \) "odd" people remain.
Hence we are left with \(2^n \) people in the circle, but by induction hypothesis, then only \(\#1 \) remains after the elimination process.

3) Let \(r = 2^n + m \), \(0 \leq m < 2^n \)

Claim: if the \(r \) people are arranged in a circle, only \(\#(2m+1) \) remains after the elimination process discussed previously.

Proof: Start by removing the \(m \) people numbered \(2, 4, 6, \ldots, 2m \) in the first round. You are left then with \(r - m = 2^n \) people and your "new" \(\#1 \) is person \(2m+1 \). By the previous result, only person \(2m+1 \) remains.

Practice midterm:

4: Show that \(13^n \equiv 6^n \pmod{7} \) \(\forall n \in \mathbb{Z}^+ \) (PMT)

Proof: Base step: \(n = 1 \):
\[
13^1 = 6^1 \pmod{7}
\]
\[
\iff \quad 7 \mid 13 - 6 = 7 \quad \checkmark
\]

\(n \rightarrow n+1 \):

\[13^n \equiv 6^n \pmod{7} \implies 7k = 13^n - 6^n \]

\[\text{for some } k \in \mathbb{Z}, \quad 7 \mid 13^n - 6^n \]

To show: \(13^{n+1} \equiv 6^{n+1} \pmod{7} \)

\[7 \mid 13^{n+1} - 6^{n+1} \]

\[\iff \quad 7k = 13^{n+1} - 6^{n+1} \quad \text{for some } k \in \mathbb{Z} \]

But \(13^{n+1} - 6^{n+1} = 13 \cdot 13^n - 6 \cdot 6^n = 13(7k + 6^n) - 6 \cdot 6^n \]

\[\implies \quad 7 \mid 13^{n+1} - 6^{n+1} \quad \checkmark \]

\[\implies \quad 7 \mid 13^{n+1} - 6^{n+1} \quad \iff \quad k \in \mathbb{Z} \]
Show that \(\forall n \in \mathbb{Z}^+ \), \(\exists a, b \in \mathbb{Z}^+ \), such that \(n = 2^{a-1}(2b-1) \) (SMI).

Basis step: \(n = 1 \). Let \(a = 1, b = 1 \)
\[
2^{a-1}(2b-1) = 2^0 \cdot 1 = 1 = n. \quad \checkmark
\]

I.H.: \(\forall k \in \mathbb{Z}^+, \underline{2 \leq k \leq n}, n \in \mathbb{Z}^+, \exists a, b \in \mathbb{Z}^+, \) such that \(n = 2^{a-1}(2b-1) \).

n \rightarrow n+1: to show: \(n+1 \) can also be written in that form.

Case 1: \(n+1 \) is even \(\Rightarrow n+1 = 2k \), for some \(k \in \mathbb{Z}^+ \).

By I.H., since \(k \leq n \), \(k \in \mathbb{Z}^+ \), we get:
\[
\frac{n+1}{2} = k = 2^{a-1}(2b-1) \text{ for some } \tilde{a}, \tilde{b} \in \mathbb{Z}^+.
\]
\[
\Rightarrow n+1 = 2k = 2^{\tilde{a}+1-1}(2\tilde{b}-1).
\]

Case 2: \(n+1 \) is odd \(\Rightarrow n+1 = 2k+1 \), for some \(k \in \mathbb{Z}^+ \).

Here no need of induction. Choose \(a = 1, b = k+1 \)
\[
\Rightarrow 2^{1-1}(2(2k+1)-1) = 2k+1 = n+1. \quad \checkmark
\]

Other problem involving Strong induction.

Q. Prove that for any integer \(n \geq 8 \), there are integers \(a, b \in \mathbb{Z} \), \(n \geq 8 \), such that \(n = 3a + 5b \).
\textbf{Proof:}

Base step: \(n = 8 \). Choose \(a = 1, b = 1 \): \(3 \cdot 1 + 5 \cdot 1 = 8 \)

I.H: Assume \(k = 3a + 5b, a, b \in \mathbb{Z}^\neq0, \forall k \in \mathbb{Z}, 8 \leq k \leq n, n \in \mathbb{Z} \).

\(n \rightarrow n+1 \): To show: \(n+1 = 3a + 5b \) for some \(a, b \in \mathbb{Z}^\neq0 \).

Consider \((n+1)-3 = n-2\)

Case 1: \(n-2 < 8 \) since \(n \geq 8 \), this occurs only if \(n = 8 \) or \(n = 9 \).

\(P(8) \) was shown already (Base step).

\(P(9): 9 = 3 \cdot 3 + 5 \cdot 0 \) \((a = 3, b = 0) \Rightarrow P(8+1) \) true

Case 2: \(n-2 \geq 8 \), then by I.H.:

\((n+1)-3 = n-2 = 3a + 5b \) for some \(a \) and \(b \).

\(\Rightarrow (n+1) = 3a + 3 + 5b \)

\[= 3(a+1) + 5b \]

\[= \alpha + 5b \]

\[= \alpha + 5b \]

\(\therefore \)

Be careful with induction.

The base step is essential.

\[\sum_{k=0}^{n} 2k + 3 = n^2 + 4n \] is wrong but the induction step works, although the statement is false for \(n = 1, 2, 3, \ldots \).