1. Let A and B be defined as follows:

$$A = \begin{bmatrix} 1 & 2 & 3 & -1 \\ 0 & 5 & 10 & -11/3 \\ 0 & 0 & 1/5 & 21 \\ 0 & 0 & 0 & -1 \end{bmatrix}, B = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 3 & 1/4 & 0 & 0 \\ 7 & 6 & 2 & 0 \\ 8 & 9 & 7 & -1 \end{bmatrix}$$

Calculate $|A^{-1}B^{-1}|$.

Hint: There’s a good way and a bad way to do this question, and the bad way is much more painful!!

2. Prove that if 0 is an eigenvalue of A, then $A\vec{x} = \vec{0}$ has infinitely many solutions.

3. Assume that $A = PDP^{-1}$ where P is some nonsingular matrix, and D is a diagonal matrix with entries d_1, d_2, \ldots, d_n along the diagonal. That is,

$$D = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}$$

Let \vec{v}_j be the jth column of P. Then, prove that \vec{v}_j is an eigenvector of A with eigenvalue d_j. (This reinforces the connection between eigenvectors and showing that A is similar to a diagonal matrix.)

Hint: Do some algebraic manipulation with the equation $A = PDP^{-1}$ to make the question manageable! Also, you don’t have to use this, but it’ll make it a little tidier: what was our earlier formula for the jth column of a matrix using matrix multiplication?

4. Let A be an $m \times n$ matrix with rows $\vec{r}_1, \vec{r}_2, \cdots, \vec{r}_n$. Show that if \vec{x} is orthogonal to \vec{r}_i for all i, then $A\vec{x} = \vec{0}$.

5. Let A be the following matrix:

$$A = \begin{bmatrix} 1 & 0 & a \\ 2 & 1 & 2 \\ 1 & 1 & -1 \end{bmatrix}$$
Note that one of the entries of A is the variable a. For which values of a does the equation

$$A\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

have infinitely many solutions? For which values of a does it have no solutions?

Hint: What is the handy function that tells us whether A is singular? How does that help?

6. Assume that $A = PDP^{-1}$ where P is some nonsingular matrix, and D is a diagonal matrix with entries d_1, d_2, \ldots, d_n along the diagonal. (This is exactly the set up from Question 2.)

(a) Use induction to show that for any positive integer k,

$$D^k = \begin{bmatrix} d_1^k & 0 & \cdots & 0 \\ 0 & d_2^k & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n^k \end{bmatrix}$$

(b) Show that

$$A^k = PD^kP^{-1}$$

for any positive integer k.

(c) Use parts (a) and (b) to calculate A^7, where

$$A = \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix}$$

Hint: You should probably start by diagonalizing A!

7. **BONUS:** Let A be an $n \times n$ matrix. Recall that $\text{tr}(A)$, the trace of A, is defined to be the sum of the diagonal entries of A: that is, if the entries of A are a_{ij}, then

$$\text{tr}(A) = a_{11} + a_{22} + \cdots + a_{nn}$$

(a) As usual, let $p_A(x)$ be the characteristic polynomial of A. Use induction to show that $p_A(x)$ is a polynomial of degree n.

(b) Now, write $p_A(x)$ as

$$p_A(x) = c_n x^n + c_{n-1} x^{n-1} + \cdots + c_1 x + c_0$$

That is, c_0 is the constant term in the polynomial, c_1 is the coefficient of x, and in general c_i is the coefficient of x^i.

i. Show that $c_n = 1$ for any $n \times n$ matrix A.

2
ii. Show that $c_{n-1} = \text{tr}(A)$ for any $n \times n$ matrix A.

(c) Now, say that A has the n eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, where the list includes repetitions: for example, if the characteristic polynomial was $(x - 1)^2(x - 2)$, we’d say that the eigenvalues are 1, 1, 2. Use the results above to show that

$$\lambda_1 + \lambda_2 + \cdots + \lambda_n = \text{tr}(A)$$