9.1 Watts-Strogatz small-world model

Definition A routing scheme from a source \(u \in V \) to a target \(v \in V \) is a path \(\{u(0),\ldots,u(k)\} \), where \(u(0) = u \), \(u(k) = v \), and \(u(j) \in N(u(j-1)) \forall j \leq k \).

Definition We say a routing is decentralized if \(u(k) \) is determined only with knowledge of \(\{u(0),\ldots,u(k)\} \cup \{N(u(0)),\ldots,N(u(k-1))\} \cup \{v\} \).

Our underlying model is a lattice (strong ties) with randomly added weak ties. We define the distance between two vertices of the lattice \(u = (u_1,v_1) \) and \(v = (v_1,v_2) \) to be

\[
d(u, v) = |u_1 - v_1| + |u_2 - v_2|
\]

Definition A greedy routing scheme with target \(v \) is one in which the \(k \)th node \(u(k) \), is chosen such that

\[
d(u(k), v) = \min\{d(u, v), u \in N(u(k-1))\}
\]

In other words, at each node, we choose the neighbor that gets us closest to the target in terms of taxi-cab distance.

Watts-Strogatz small-world model Start with a lattice with \(n = m^2 \) nodes. Each node \(u \) is connected to its neighbors:

\[
\{w \in V - \{u\} : ||u - w|| = 1\}
\]

Where \(|| \cdot || \) is \(L_1 \) (taxi-cab) distance. These represent strong ties (close friends) in a network. Each node chooses a long-range ”shortcut” uniformly at random. In other words, each node will have a weak tie to another node in that lattice, and that will be chosen at random. So if \(u \rightsquigarrow v \) denotes a shortcut between nodes \(u \) and \(v \), we have

\[
\mathbb{P}(u \rightsquigarrow v) = \frac{1}{|V - \{u\}|} = \frac{1}{n - 1}
\]

Now let \(T_{alg}(u, v) \) be the time it takes to route from \(u \) to \(v \) given some algorithm \(alg \). We want to know if \(W - S \) is algorithmically small world. In other words, is \(\mathbb{E}[T_{alg}(u, v)] = O(\log(n)) \)?
Theorem 9.1. For "most" $u, v \in V$ and any decentralized algorithm alg

$$E[T_{\text{alg}}(u, v)] = \Omega(m^{\frac{2}{3}})$$

So then we have that W-S is not algorithmically small-world. We thus want to modify it so that we have $O(\log(n))$.

9.2 Kleinberg small-world model

Consider an infinite family parametrized by $\alpha \geq 0$. We will have nodes choose a long-range "shortcut" with probability:

$$P(u \leftrightarrow v) = \frac{1}{||u-v||^\alpha} \sum_{w \neq v} \frac{1}{||u-w||^\alpha}$$

We call this the "Kleinberg Model"

Note that α is a clustering parameter for weak ties. Also, if $\alpha = 0$, we get the W-S small world model, while if $\alpha = \infty$, we get $P(u \leftrightarrow v) = \frac{1}{N(u)}$, where $N(u)$ denotes the set of neighbors of u.

9.2.1 Choosing α

We want a model that is algorithmically small-world. How can we choose α so that the Kleinberg Model is algorithmically small-world?

Idea When α is too small, weak ties spread too thin, but when α gets large, the shortcuts don’t make a difference.

We want to find $\alpha \in (0, \infty)$ such that we get the the algorithmic small world property.

Theorem 9.2. If $\alpha = 2$, then with the greedy algorithm,

$$E[T_{\text{greedy}}(u, v)] = O(\log(n))$$

Proof: idea: Pick some target v. We take a box around it of size $2s$, so there are $2s$ nodes in the box. Then if $u \notin$ box, we find how long it takes on average to get to $\frac{||u-v||}{2^j}$, $j = 1, 2, ..., \log_2(m)$. \[\square \]

Theorem 9.3.

i) If $\alpha \in [0, 2)$, then for "most" pairs (u, v), (proportion of pairs for which this holds goes to 1 as $n \to \infty$), and any decentralized algorithm alg,

$$E[T_{\text{alg}}(u, v)] = \Omega(m^{\frac{2-\alpha}{3}})$$

ii) If $\alpha > 2$,

$$E[T_{\text{alg}}(u, v)] = \Omega(m^{\frac{\alpha-2}{\alpha-1}})$$
Proof: Consider
\[z = \sum_{w \neq u} \frac{1}{||u-w||^\alpha} = \sum_{i=1}^{2m} \sum_{w: ||u-w||=i} \frac{1}{i^\alpha} \sim \sum_{i=1}^{2m} i \cdot i^\alpha \]

Now
\[\int_1^m x \cdot x^{-\alpha} dx = \int_1^m x^{1-\alpha} dx \sim m^{2-\alpha} \text{ when } \alpha \neq 2 \text{ and } \log(m) \text{ when } \alpha = 2 \]

Idea for (i): Choose some destination \(v \) and consider a box of side length \(m^\beta \) for some given \(\beta < 1 \). Take an \(m^\beta \) box around \(v \). Then we have that the proportion of sources \(u \in V \) such that \(u \) is inside the box is \(\frac{m^{2\beta}}{m^2} = m^{2(\beta-1)} \Rightarrow \) as \(n \to \infty \), the proportion of such sources \(u \to 0 \).

Now consider \(u \in V \) outside of the box. Without any shortcuts, we'll need to take at least \(\Omega(m^\beta) \) steps to get into the box. Then if \(P \) is the probability that \(u \) has a shortcut into the box,

\[P \leq \frac{\text{sum}_{w\in\text{box}} \frac{1}{||u-v||^\alpha}}{z} \leq \frac{\text{number of nodes in box}}{z} = \frac{m^{2\beta}}{z} \sim \frac{m^{2\beta}}{m^{2-\alpha}} = m^{2\beta-2+\alpha} \]

\(\Rightarrow \) On average, we will have to check \(m^{-2\beta+2-\alpha} \) nodes to find a shortcut into the box. Then the minimum amount of time to route from \(u \) to \(v \geq \Omega\{\max\{m^\beta, m^{-2\beta+2-\alpha}\}\} \). We want to minimize this over \(\beta \), which we can do by finding \(\beta \) such that \(\beta = -2\beta + 2 - \alpha \):

\[\beta = -2\beta + 2 - \alpha \Rightarrow 3\beta = 2 - \alpha \Rightarrow \beta = \frac{2 - \alpha}{3} \]

Then we have that \(\mathbb{E}[T_{alg}(u, v)] = \Omega(m^{\frac{2-\alpha}{3}}) \). \(\square \)