1. Let V be an n-dimensional vector space and W be an m-dimensional vector space.
 a) Suppose $n < m$. Show that there is no linear transformation $L: V \to W$ such that L is onto.
 b) Suppose $n > m$. Show that there is no linear transformation $L: V \to W$ such that L is one-to-one.
 c) Prove that $L: V \to W$ is an isomorphism only if $n = m$.
 d) Let U_3 be the space of 3×3 upper triangular matrices and define the linear transformation $L: U_3 \to \mathcal{M}_{33}$ by $L(A) = \frac{1}{2}(A + A^T)$. Is L onto? Is L one-to-one?

2. Let $V = \mathcal{P}_2$ with standard basis $B = \{1, x, x^2\}$ and let $W = \mathcal{M}_{22}$ with standard basis $D = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$. Consider $L: V \to W$ given by

 \begin{align*}
 L(p) &= \begin{bmatrix}
 p(1) - p(0) & p(2) - p(0) \\
 p(-1) - p(0) & p(-2) - p(0)
 \end{bmatrix}.
 \end{align*}

 (For example, $L(x^2) = \begin{bmatrix} 1^2 - 0^2 & 2^2 - 0^2 \\
 (-1)^2 - 0^2 & (-2)^2 - 0^2 \end{bmatrix}$.)
 a) Prove that L is a linear transformation.
 b) Find the matrix representation $[L]_{D,B}$ of L with respect to the bases B and D.
 c) What is the dimension of $\ker(L)$? Find a basis for $\ker(L)$.
 d) What is the dimension of $\text{range}(L)$? Find a basis for $\text{range}(L)$.
 e) Verify the dimension theorem (i.e., rank-nullity theorem) for L.

3. Let $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 5 & 7 \\ 5 & 10 & 13 & 18 \end{bmatrix}$ so that $\text{rref}(A) = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.
 b) Find a basis for the span of the four vectors in part (a).
4. Let \(L : \mathbb{R}^2 \to \mathbb{R}^2 \) be given by \(L \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} 8x_1 - 10x_2 \\ 3x_1 - 3x_2 \end{bmatrix} \). Define the standard basis \(B = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} \) and an alternate basis \(D = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 5 \\ 3 \end{bmatrix} \right\} \). Consider a vector \(v = \begin{bmatrix} 8 \\ 3 \end{bmatrix} \).

a) Find the change of basis matrices \(P_{DB} \) (i.e., from \(B \) to \(D \)) and \(P_{BD} \) (i.e., from \(D \) to \(B \)).

b) Compute \([v]_B \) and \([v]_D \).

c) Find \([L]_BB \) and \([L]_{DD} \).

5. Consider \(A = \begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix} \).

a) Write the characteristic polynomial \(p_A(\lambda) \) and use this to determine the eigenvalues of \(A \).

[Hint: Factor out a term of the form \((\lambda - 1)\).]

b) Find the eigenspaces corresponding to the eigenvalues of \(A \).

c) Is \(A \) diagonalizable? If so, find a nonsingular matrix \(P \) and a diagonal matrix \(D \) such that \(A = PDP^{-1} \).

6. Let \(A = \begin{bmatrix} -8 & 4 & -3 & 2 \\ 2 & 1 & -1 & 0 \\ -3 & -5 & 4 & 0 \\ 2 & -4 & 3 & -1 \end{bmatrix} \).

a) Find the determinant of \(A \) using a cofactor expansion.

b) Find the determinant of \(A \) by using row operations to put \(A \) into upper triangular form. Verify that your answer agrees with part (a).

c) Is \(A \) nonsingular (i.e., invertible)?

7. The following two questions are unrelated to each other.

a) Show that \(V = \mathbb{R} \) with the usual operation of scalar multiplication but with addition given by \(x \oplus y = 2(x + y) \) is not a vector space.

b) Consider the subset \(S \) of all matrices in \(M_{5 \times 5} \) which have eigenvalue 1. Is \(S \) a subspace of \(M_{5 \times 5} \)? Explain why or why not.

8. True or false? Explain your answers.

a) The plane \(x_1 + 3x_2 - 4x_3 = 1 \) is a subspace of \(\mathbb{R}^3 \).

b) If \(A \) is a \(3 \times 5 \) matrix, then \(\dim(\text{Ker}(A)) \geq 2 \).

c) Let \(B = \{b_1, \ldots, b_n\} \) be a basis for a vector space \(V \). If \(n \) vectors \(\{d_1, \ldots, d_n\} \) span \(V \) then the coordinate vectors \(\{[d_1]_B, \ldots, [d_n]_B\} \) are linearly independent.
d) Every linear transformation $L: \mathbb{R}^5 \to \mathbb{R}^4$ takes the form $L(x) = Ax$ with A a 5×4 matrix.

e) Let $\text{rref}(A)$ be the reduced row-echelon form of a matrix A. Then, the pivot columns of $\text{rref}(A)$ form a basis of the column space of A (i.e., the span of the columns of A).

f) The vectors $b_1 = 1 + t + 2t^2$, $b_2 = 2 + 3t + 5t^2$, $b_3 = 3 + 7 + 9t^2$ form a basis for \mathcal{P}_2.

g) [Harder...] The equation $p''(t) - p(t) = q(t)$ has a solution $p \in \mathcal{P}_3$ for any $q \in \mathcal{P}_3$.