1. Let \(A = \begin{bmatrix} 4 & 3 & 1 & 2 \\ 1 & 9 & 0 & 2 \\ 8 & 3 & 2 & -2 \\ 4 & 3 & 1 & 1 \end{bmatrix} \).

a) Calculate the determinant of \(A \) using a cofactor expansion.

Solution: We expand \(\det(A) \) about the third column:

\[
\det(A) = 1 \cdot \begin{vmatrix} 8 & 3 & -2 \\ 4 & 3 & 1 \end{vmatrix} + 2 \cdot \begin{vmatrix} 1 & 9 & 2 \\ 4 & 3 & 1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & 9 & 2 \\ 8 & 3 & 2 \end{vmatrix} = -111 - 66 + 180 = 3.
\]

b) Recalculate the determinant using row reduction to verify your answer to (a).

Solution: To calculate the determinant, we can put \(A \) into upper triangular form using row operations as follows:

\[
A = \begin{bmatrix} 4 & 3 & 1 & 2 \\ 1 & 9 & 0 & 2 \\ 8 & 3 & 2 & -2 \\ 4 & 3 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 9 & 0 & 2 \\ 4 & 3 & 1 & 2 \\ 8 & 3 & 2 & -2 \\ 4 & 3 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 9 & 0 & 2 \\ 0 & -33 & 1 & -6 \\ 0 & -3 & 0 & -6 \\ 0 & 0 & 0 & -1 \end{bmatrix} = U.
\]

Therefore, \(3 = \det(U) = (-1) \times (-1) \times \det(A) \) so \(\det(A) = 3 \) as expected.

c) What is the determinant of \(-2A\)? Why?

Solution: \(\det(-2A) = (-2)^4 \det(A) = 16 \cdot 3 = 48 \) since \(A \) has 4 rows.

2. Prove that if \(A \) is an orthogonal matrix (i.e., \(A^T = A^{-1} \)) then the determinant of \(A \) is either 1 or \(-1\).

Solution: Since

\[
\det(A) = \det(A^T) = \det(A^{-1}) = \frac{1}{\det(A)}
\]

we have that \((\det(A))^2 = 1 \), so \(\det(A) = \pm 1 \).

3. Let \(A = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & -1 & 0 \end{bmatrix} \).

a) Determine the eigenvalues of \(A \).

Solution: The characteristic polynomial is

\[
p_A(\lambda) = \det(A - \lambda I) = -\lambda^3 + \lambda = -\lambda(\lambda + 1)(\lambda - 1)
\]
so the eigenvalues are \(\lambda = 1, -1, 0 \).

b) Find a nonsingular matrix \(P \) and a diagonal matrix \(D \) such that \(A = PDP^{-1} \).

Solution: Computing the eigenspaces for each eigenvalue and putting the corresponding fundamental eigenvectors as the columns of a matrix \(P \), we find that \(A = PDP^{-1} \) with

\[
P = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.
\]

c) Compute the determinant of \(A \) only using your answer to part (a) (i.e., do not compute the determinant directly).

Solution: \(\det(A) = p_A(0) = 0 \).

4. The parts of the following question are unrelated.

a) Is \(V = \mathbb{R} \) with the usual scalar multiplication, but with addition defined as \(x \oplus y = 3(x + y) \) a vector space? Justify your answer.

Solution: No. The operation \(\oplus \) is not associative since \((x \oplus y) \oplus z = 3(3(x + y) + z) = 9x + 9y + 3z \neq 3x + 9y + 9z = 3(x + 3(y + z)) = x \oplus (y \oplus z)\).

b) Find the zero vector and the additive inverse of the vector space \(\mathbb{R}^2 \) with operations \([x, y] \oplus [w, z] = [x + w + 3, y + z - 4] \) and \(a \odot [x, y] = [ax + 3a - 3, ay - 4a + 4] \).

Solution: \(0 = 0 \odot [x, y] = [0x + 3(0) - 3, 0y - 4(0) + 4] = [-3, 4] \) while \(-([x, y]) = [-x - 6, -y + 8] \).

c) If \(V \) is a vector space with subspace \(W_1 \) and \(W_2 \), prove that \(W_1 \cap W_2 \) is also a subspace.

Solution: Since the subspaces \(W_1 \) and \(W_2 \) both contain the zero vector, \(0 \in W_1 \cap W_2 \) and \(W_1 \cap W_2 \) is nonempty. Now suppose \(x, y \in W_1 \cap W_2 \) and \(c \) is a scalar. Then \(x, y \in W_1 \) and \(x, y \in W_2 \) so \(x + y \in W_1 \) and \(x + y \in W_2 \) since \(W_1 \) and \(W_2 \) are closed under vector addition. Therefore, \(x + y \in W_1 \cap W_2 \) and \(W_1 \cap W_2 \) is closed under vector addition as well. Similarly we find \(W_1 \cap W_2 \) is closed under scalar multiplication, so \(W_1 \cap W_2 \) is a subspace.

a) Is \(S \) linearly independent? If not, find a maximal linearly independent subset.

Solution: Let \(A = \begin{bmatrix} 2 & 2 & 7 \\ -3 & 9 & 6 \\ 4 & -12 & -10 \\ -1 & 3 & 4 \end{bmatrix} \) be the matrix whose columns are vectors in \(S \). Then \(\text{rref}(A) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \), which does not have a pivot in each column so \(S \) is not linearly independent. One maximal linearly independent subset consists of the pivot columns of \(A \)—i.e., \(B = \{ [2, -3, 4, -1]^T, [3, 1, -2, 2]^T, [2, 8, -12, 3]^T \} \).
b) Does S span \mathbb{R}^4? If not, express $\text{span}(S)$ in terms of a minimal spanning set.

Solution: No, S does not span \mathbb{R}^4 since $\text{rref}(A)$ does not have a pivot in every row. A minimal spanning subset of S is the set B found in part (a), and $\text{span}(S) = \text{span}(B)$.

c) Construct a basis for $\text{span}(S)$. What is $\dim(\text{span}(S))$?

Solution: B forms a basis for $\text{span}(S)$, and $\dim(\text{span}(S)) = |B| = 3$.

d) Construct a basis for \mathbb{R}^4 that contains the maximal linearly independent subset found in part (a).

Solution: We must extend the linearly independent set B by adding to it another vector that is linearly independent to B. For example, let $v = [1, 0, 0, 0]^T$ and define $\bar{B} = B \cup \{v\}$. Putting the vectors in \bar{B} as columns of a matrix \bar{A} we find that $\text{rref}(\bar{A}) = I_4$ so \bar{B} is a basis of \mathbb{R}^4.

6. Prove that all vectors orthogonal to $[2, -3, 1]^T$ forms a subspace W of \mathbb{R}^3. What is $\dim(W)$ and why?

Solution: Let $v = [2, -3, 1]^T$. Note that $0 \in W$ since $0 \cdot v = 0$ so W is nonempty. Now suppose $x, y \in W$ and c is a scalar. Then $(x + y) \cdot v = (x \cdot v) + (y \cdot v) = 0 + 0 = 0$ and $(cx) \cdot v = c(x \cdot v) = c0 = 0$.

We will compute W explicitly in order to find its dimension. Since $x = [x_1, x_2, x_3]^T \in W$ if and only if $[2, -3, 1]^T \cdot x = 2x_1 - 3x_2 + x_3 = 0$, we have that $x_3 = -2x_1 + 3x_2$ so $x = x_1[1, 0, -2]^T + x_2[0, 1, 3]^T$. Therefore, $B = \{[1, 0, -2]^T, [0, 1, 3]^T\}$ is a basis for W and $\dim(W) = 2$.

3